共查询到18条相似文献,搜索用时 78 毫秒
1.
2.
3.
针对离散非线性系统,利用神经网络非线性激励函数的局部线性表示,提出一种可用于非线性过程的神经网络预测函数控制方法并给出了控制律的收敛性分析.该方法将复杂的神经网络非线性预测方程转化成直观而有效的线性形式,同时利用线性预测函数方法求得解析的控制律,避免了复杂的非线性优化求解,仿真结果表明了算法的有效性. 相似文献
4.
基于神经网络的非线性系统多步预测控制 总被引:15,自引:0,他引:15
针对离散非线性系统,利用非线性激励函数的局部线性表示,提出一种可用于非线性过程的神经网络多步预测控制方法,并给出了控制律的收敛性分析.该方法将非线性系统处理成简单的线性和非线性两部分,对复杂的非线性多步预测方程给出了直观而有效的线性形式,并用线性预测控制方法求得控制律,避免了复杂的非线性优化求解.仿真结果表明了该算法的有效性. 相似文献
5.
采用基于径向基神经网络(RBFNN)模型的非线性模型预测控制方法,被控对象选择火花塞点火(SI)发动机的空燃比(AFR)高度非线性复杂系统,利用渐消记忆最小二乘法实现基于RBFNN的SI发动机AFR系统建模以及参数在线自适应更新。针对非线性模型预测控制中寻优问题,运用序列二次规划滤子算法对最优控制序列进行求解,并加入滤子技术避免了罚函数的使用。在相同的实验环境下,与PI控制算法和Volterra模型预测控制方法进行仿真对比实验,结果表明,所提算法的控制效果明显优于其他两种方法。 相似文献
6.
基于神经网络与多模型的非线性自适应广义预测解耦控制 总被引:1,自引:0,他引:1
针对一类非线性多变量离散时间动态系统,提出了基于神经网络与多模型的非线性自适应广义预测解耦控制方法.该控制方法由线性鲁棒广义预测解耦控制器和神经网络非线性广义预测解耦控制器以及切换机构组成.线性鲁棒广义预测解耦控制器用于保证闭环系统输入输出信号有界,神经网络非线性广义预测解耦控制器能够改善系统性能.切换策略通过对上述两种控制器的切换,保证系统稳定的同时,改善系统性能.同时本文给出了所提自适应解耦控制方法的稳定性和收敛性分析.最后,通过仿真实例验证了该方法的有效性. 相似文献
7.
8.
针对一类多输入多输出非线性被控对象,利用前向神经网络逼近原系统的逆系统,将其作为控制器,采用预测滚动优化性能指标训练该神经网络逆控制器,以克服干扰和不确定性影响,实现对多变量非线性对象的解耦控制。对某微型锅炉对象进行了控制算法仿真,结果表明,所提出的控制方法能够克服模型误差的影响,实现稳定解耦控制,且易于实现。在仿真过程中通过实验方法建立该锅炉对象的神经网络预测模型,并注意采用泛化方法采集训练样本数据和训练神经网络,以提高神经网络模型的泛化能力。 相似文献
9.
针对一类非线性多变量离散时间动态系统,提出了基于神经网络与多模型的非线性自适应广义预测解耦控制方法.该控制方法由线性鲁棒广义预测解耦控制器和神经网络非线性广义预测解耦控制器以及切换机构组成.线性鲁棒广义预测解耦控制器用于保证闭环系统输入输出信号有界,神经网络非线性广义预测解耦控制器能够改善系统性能.切换策略通过对上述两种控制器的切换,保证系统稳定的同时,改善系统性能.同时本文给出了所提自适应解耦控制方法的稳定性和收敛性分析.最后,通过仿真实例验证了该方法的有效性. 相似文献
10.
11.
非线性系统多步预测控制的复合神经网络实现 总被引:10,自引:1,他引:10
提出一种基于神经网络的非线性多步预测控制,采用由线性网络和动态递归神经网络构成的复合神经网络。在此基础上将线性系统的广义预测控制器扩展为非线性系统的多步预测控制器。通过对非线性过程CSTR的仿真表明,该方法的稳定性和鲁棒性明显优于线性DMC预测控制。 相似文献
12.
13.
基于神经网络与多模型的非线性自适应广义预测控制 总被引:9,自引:0,他引:9
针对一类不确定非线性离散时间动态系统, 提出了基于神经网络与多模型的非线性广义预测自适应控制方法. 该自适应控制方法由线性鲁棒广义预测自适应控制器, 神经网络非线性广义预测自适应控制器和切换机制三部分构成. 线性鲁棒广义预测自适应控制器保证闭环系统的输入输出信号有界, 神经网络非线性广义预测自适应控制器能够改善系统的性能. 切换策略通过对上述两种控制器的切换, 保证系统稳定的同时, 改善系统性能. 给出了所提自适应方法的稳定性和收敛性分析. 最后通过仿真实例验证了所提方法的有效性. 相似文献
14.
多步预测性能指标函数下的神经网络逆动态控制方法 总被引:17,自引:3,他引:17
将预测控制与神经网络逆动态控制相结合,提出了多步预测性能指标函数下的神经网络逆动态控制方法。该方法用多步预测性能指标函数训练神经网络逆动态控制器的权值,使整个系统具有预测控制的特点,有比通常的神经网络逆动态控制快得多的响应速度和更好的响应性能。 相似文献
15.
16.
管式加热炉具有典型的非线性、多变量、大时滞、强耦合和时变特性,传统的控制策略很难获得理想的控制性能。为此,提出了基于一类多模型的自适应神经网络预测控制方法,首先基于不同负荷下加热炉的运行情况建立多个自适应神经网络模型,预测变负荷、大扰动时的加热炉输入输出状况,然后通过自适应调整神经网络模型的结构和参数跟踪加热炉由于参数时变或其他干扰引起的系统漂移,最后应用粒子群算法对基于多模型自适应神经网络进行滚动优化,获得加热炉操作变量的次优控制律。此方法可以有效地跟踪多路进料、多燃烧器加热炉的控制指标,提高了加热炉的整体热效率,并且能够节约燃料,减少温室气体排放。所开发的控制系统成功应用于某炼厂常减压加热炉装置,取得了良好的效果。 相似文献
17.
基于神经网络的广义非线性预测PID控制 总被引:3,自引:0,他引:3
针对一些复杂的非线性系统用基于线性模型的预测控制器控制效果不理想的问题,本文提出在利用前馈网络对非线性系统建模的基础上,对系统输出实现递推多步预测,并且结合非线性PID,用另一前馈神经网络作为控制器,实现对非线性系统的控制。经网络的在线辨识采用梯度法,仿真实验验证了方法的有效性。 相似文献
18.
针对有约束多胞不确定系统, 本文提出多步控制集的概念, 并将其作为终端集进而设计鲁棒预测控制器. 由于设计了一系列可变的反馈律, 鲁棒预测控制器可以得到更好的控制性能和更大的初始可行域. 另外, 利用多步控制集的特性, 本文提出了一种将预测控制器的在线计算量转移到离线完成的算法. 通过该算法, 可以有效地平衡鲁棒预测控制器的控制性能、在线计算量和初始可行域. 仿真算例验证了这些算法的有效性. 相似文献