首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A control scheme for the single-phase three-level pulse-width modulation active rectifier is proposed. A hysteresis current control scheme is used to draw the sinusoidal line current in phase with the mains voltage. The line current command is derived from a voltage controller and a phase-locked loop circuit. The blocking voltage of each power device is clamped to half of the DC-link voltage in the proposed active rectifier. In order to generate the three-level voltage pattern on the DC side of the active rectifier, the region detector of the line voltage, capacitor voltage compensator and hysteresis current comparator are employed in the adopted control algorithm to achieve high input power factor and low current distortion. To investigate the proposed control algorithm, the adopted rectifier is simulated and experimental tests from a laboratory prototype undertaken.  相似文献   

2.
In this paper, a new single-phase switching mode rectifier (SMR) for three-level pulse width modulation (PWM) is proposed to achieve high input power factor, low current harmonics, low total harmonic distortion (THD) and simple control scheme. The mains circuit of the proposed SMR consists of six power switches, one boost inductor, and two DC capacitors. The control algorithm is based on a look-up table. There are five control signals in the input of the look-up table. These control signals are used to control the power flow of the adopted rectifier, compensate the capacitor voltages for the balance problem, draw a sinusoidal line current with nearly unity power factor, and generate a three-level PWM pattern on the AC side of adopted rectifier. The advantages of using three-level PWM scheme compared with two-level PWM scheme are using low voltage stress of power switches, decreasing input current harmonics, and reducing the conduction losses. The performances of the proposed multilevel SMR are measured and shown in this paper. The high power factor and low harmonic currents at the input of the rectifier are verified by software simulations and experimental results from a laboratory prototype  相似文献   

3.
文章对基于单周期控制的三相PWM高功率因数整流器进行了研究,推导了单周期控制三相电压型PWM整流器的控制规律。它不需要乘法器更不需要对输入电压进行检测,其控制逻辑简单并且以恒定频率工作,可以在每个开关周期控制输入电流跟踪正弦参考量,从而实现低电流谐波畸变和高功率因数。基于Multisim2001软件平台,建立了基于单周期控制的三相电压型PWM整流器的仿真模型,完成了6kW三相PWM整流器的设计和实验研究,仿真和试验结果都验证了理论分析的正确性。  相似文献   

4.
The performance of the parallel resonant power converter and the combination series/parallel resonant power converter (LCC converter) when operated above resonance in a high power factor mode are determined and compared for single phase applications. When the DC voltage applied to the input of these converters is obtained from a single phase rectifier with a small DC link capacitor, a relatively high power factor inherently results, even with no active control of the input line current. This behavior is due to the pulsating nature of the DC link and the inherent capability of the converters to boost voltage during the valleys of the input AC wave. With no active control of the input line current, the power factor depends on the ratio of operating frequency to tank resonant frequency. With active control of the input line current, near-unity power factor and low-input harmonic currents can be obtained  相似文献   

5.
A new control scheme for a single-phase bridge rectifier with three-level pulsewidth modulation is proposed to achieve high power factor and low current distortion. The main circuit consists of a diode-bridge rectifier, a boost inductor, two AC power switches, and two capacitors. According to the proposed control scheme based on a voltage comparator and hysteresis current control technique, the output capacitor voltages are balanced and the line current will follow the supply current command. The supply current command is derived from a DC-link voltage regulator and an output power estimator. The major advantage of using a three-level rectifier is that the blocking voltage of each AC power device is clamping to half of the DC-link voltage and the generated harmonics of the three-level rectifier are less than those of the conventional two-level rectifier. There are five voltage levels (0, ±VDC/2, ±VDC) on the AC side of the diode rectifier. The high power factor and low harmonic currents at the input of the rectifier are verified by software simulations and experimental tests  相似文献   

6.
A Simple and novel variable hysteresis band current control technique for three-phase three-level unity power factor (PF) rectifier is proposed in this paper. The hysteresis band is controlled as variations of the rectifier input voltage and output dc link voltage to achieve constant switching frequency at any operating conditions, i.e., at rated and below and above the rated conditions. The rectifier has the characteristic of easy implementation, and draws a nearly sinusoidal current at unity input PF. Theoretical and predicted results of its analysis are verified initially through digital simulation, and confirmed by using an experimental prototype  相似文献   

7.
A low-harmonic GTO (gate turn-off) thyristor AC-to-DC converter with line current lead-lag phase shift control ability is proposed and analyzed. The converter can be used either as a low-harmonic GTO-controlled rectifier or a fundamental input power factor compensator in a power supply system. The effect of PWM (pulse width modulation) current phase number on the harmonic contents and converter output voltage control range is investigated. Lower order input current harmonics are eliminated over a wide range, using a specially designed PWM current pattern. The effect of the PWM current pulse number on the power factor compensation characteristic is investigated  相似文献   

8.
The use of active damping to reduce the total harmonic distortion (THD) of the line current for medium-voltage (2.3-7.2 kV) high-power pulsewidth-modulation (PWM) current-source rectifiers is investigated. The rectifier requires an LC filter connected at its input terminals, which constitutes an LC resonant mode. The lightly damped LC filter is prone to series and parallel resonances when tuned to a system harmonic either from the utility or from the PWM rectifier. These issues are traditionally addressed at the design stage by properly choosing the filter resonant frequency. This approach may result in a limited performance since the LC resonant frequency is a function of the power system impedance, which usually varies with power system operating conditions. In this paper, an active damping control method is proposed for the reduction in line current THD of high-power current-source rectifiers operating at a switching frequency of only 540 Hz. Two types of LC resonances are investigated: the parallel resonance excited by harmonic currents drawn by the rectifier and the series resonance caused by harmonic pollution in the source voltage. It is demonstrated through simulation and experiments that the proposed active damping control can effectively reduce the line-current THD caused by both parallel and series resonances.  相似文献   

9.
This paper proposes a new single-phase high-power-factor rectifier, which features regulation by conventional pulsewidth modulation (PWM), soft commutation, and instantaneous average line current control. A new zero-current switching PWM (ZCS-PWM) auxiliary circuit is configured in the presented ZCS-PWM rectifier to perform ZCS in the active switches and zero-voltage switching (ZVS) in the passive switches. Furthermore, soft commutation of the main switch is achieved without additional current stress by the presented ZCS-PWM auxiliary circuit. A significant reduction in the conduction losses is achieved because of the following reasons: 1) the circulating current for the soft switching flows only through the auxiliary circuit; 2) a minimum number of switching devices are involved in the circulating current path; and 3) the proposed rectifier uses a single converter instead of the conventional configuration composed of a four-diode front-end rectifier followed by a boost converter. Seven transition states for describing the behavior of the ZCS-PWM rectifier in one switching period are described. The PWM-switch model is used to predict the system performance. A prototype rated at 1 kW, operating at 60 kHz, with an input alternating current voltage of 220 V/sub rms/ and an output voltage of 400 V/sub dc/, has been implemented in laboratory. An efficiency of 98.3% and a power factor over 0.99 have been measured. Analysis, design, and the control circuitry are also presented in this paper.  相似文献   

10.
A novel hybrid three-phase rectifier is proposed. It is capable to achieve high input power factor (PF) and low total harmonic input currents distortion (THD/sub I/). The proposed hybrid high power rectifier is composed by a standard three-phase six-pulse diode rectifier (Graetz bridge) with a parallel connection of single-phase Sepic rectifiers in each three-phase rectifier leg. Such topology results in a structure capable of programming the input current waveform and providing conditions for obtaining high input power factor and low harmonic current distortion. In order to validate the proposed hybrid rectifier, this work describes its principles, with detailed operation, simulation, experimental results, and discussions on power rating of the required Sepic converters as related to the desired total harmonic current distortion. It is demonstrated that only a fraction of the output power is processed through the Sepic converters, making the proposed solution economically viable for very high power installations, with fast investment payback. Moreover, retrofitting to existing installations is also feasible since the parallel path can be easily controlled by integration with the existing dc-link. A prototype has been implemented in the laboratory and it was fully demonstrated to both operate with excellent performance and be feasibly implemented in higher power applications.  相似文献   

11.
This paper proposes a new single-phase high-power-factor rectifier, which features regulation by conventional pulsewidth modulation (PWM), soft commutation, and instantaneous average line current control. A new zero-voltage-switching PWM (ZVS-PWM) auxiliary circuit is configured in the presented ZVS-PWM rectifier to perform ZVS in the main switches and the passive switches, and zero-current switching in the auxiliary switch. Furthermore, soft commutation of the main switch is achieved without additional current stress by the presented ZVS-PWM auxiliary circuit. A significant reduction in the conduction losses is achieved, since the circulating current for the soft switching flows only through the auxiliary circuit and a minimum number of switching devices are involved in the circulating current path, and the proposed rectifier uses a single converter instead of the conventional configuration composed of a four-diode front-end rectifier followed by a boost converter. Nine transition states for describing the behavior of the ZVS-PWM rectifier in one switching period are described. A prototype rated at 1 kW, operating 80 kHz, with an input ac voltage of 220 V/sub rms/ and an output voltage of 400 V/sub dc/ has been implemented in the laboratory. An efficiency of 96.7% and power factor over 0.99 has been measured. Analysis, design, and the control circuitry are also presented in this paper.  相似文献   

12.
In this paper, polyphase power transformer arrangements with reduced kVA capacities are presented for harmonic current reduction in high power diode rectifier-type utility interface systems. Based on the concept of an autotransformer, a 12-pulse rectifier system is realized with a resultant transformer kVA rating of 0.18P0 (pu). In this arrangement the 5, 7, 17, 19, etc. harmonics are absent from the utility input line current. In the second scheme an 18-pulse rectifier is realized with the kVA rating of 0.16P0 (pu) and the 5, 7, 11, 13, etc. harmonics are canceled in the utility line currents. Analytical design equations are presented to facilitate the design of system components. Simulation results verify the proposed concept, and experimental results are provided from a 208 V, 10 kVA 12-pulse rectifier system. The advantage of employing the proposed system for utility interface of rectifier/PWM-inverter motor drive systems is also explained  相似文献   

13.
This paper proposes a new single-phase high-power-factor rectifier, which features regulation by conventional pulsewidth modulation (PWM), soft commutation, and instantaneous average line current control. A new zero-current-switching PWM (ZCS-PWM) auxiliary circuit is configured in the presented ZCS-PWM rectifier to perform ZCS in the active switches and zero-voltage switching in the passive switches. Furthermore, soft commutation of the main switch is achieved without additional current stress by the presented ZCS-PWM auxiliary circuit. A significant reduction in the conduction losses is achieved, since the circulating current for the soft switching flows only through the auxiliary circuit and a minimum number of switching devices are involved in the circulating current path and the proposed rectifier uses a single converter instead of the conventional configuration composed of a four-diode front-end rectifier followed by a boost converter. Nine transition states for describing the behavior of the ZCS-PWM rectifier in one switching period are described. The PWM switch model is used to predict the system performance. A prototype rated at 1 kW, operating 50 kHz, with an input ac voltage of 220 V/sub rms/ and an output voltage 400 V/sub dc/ has been implemented in laboratory. An efficiency of 97.3% and power factor over 0.99 has been measured. Analysis, design, and the control circuitry are also presented in this paper.  相似文献   

14.
In this paper three novel control schemes for the single-phase ac/dc converter with two-level or three-level pulse width modulation are proposed to improve the power quality. A diode rectifier with two power switches is adopted as a power factor correction circuit to achieve high power factor and low harmonic distortion. The proposed control schemes are based on look-up tables with a hysteresis current controller instead of the conventional complex control algorithm. The proposed control scheme can (1) draw a sinusoidal line current, (2) achieve a unity power factor and (3) improve voltage unbalance problem on the dc bus capacitors. The software simulations and experimental results are shown to verify the proposed control algorithms. It is shown that the measured harmonic currents and input power factor satisfy the international standard requirements such as International Electrotechnical Commission 1000-3-2.  相似文献   

15.
The purpose of this paper is to develop, design and test an overall approach to line side filter optimization for the current type PWM controlled active rectifier and to investigate influence of control system to converters performance and filter size (TkVA). For the instantly predominating offline current rectifier control methods, a line side filter optimization algorithm and corresponding computer program was proposed and developed. It uses both complete transient and steady state, characteristics of system, ensuring minimized individual and total harmonic distortion (according to standards) of line current and a good power factor together with minimum costs. Suggested method was numerically verified through the extensive simulations using SIMULINK toolbox of MATLAB software. Final verification came from the implementation on a prototype. Detailed testing was performed and the proposed algorithm showed satisfying performance under different operating conditions. As far as the authors are aware, the novel contribution coming from this paper is in completing the line side filter optimization algorithm taking into account both transient and steady state of system, power supply demands and the power factor restriction for the offline controlled current type AC/DC converter  相似文献   

16.
A unidirectional three-phase switch-mode rectifier that delivers sinusoidal input currents in phase with the corresponding input phase voltages is proposed and analyzed in this paper. In the proposed topology, three AC switches are placed before the bridge rectifier and, respectively, across two power lines. A simple control scheme combing space-vector modulation and hysteresis current control is presented. Sinusoidal input line currents are observed in experimental results  相似文献   

17.
Converters operated in discontinuous-conduction-mode (DCM) and in continuous-conduction-mode (CCM) are suitable for lighter and higher loads, respectively. A new, constant switching frequency based single-phase rectifier system is proposed, which operates in DCM and in CCM for outputs less than and greater than 50% rated load, respectively, covering a wide range of load variation. The power circuit and the control circuit of the proposed rectifier are easily configurable for DCM and CCM operations. The measured load current is used to select the desired operating mode. The peak device current under DCM is limited to rated device current under CCM without using a device of higher current rating. The input current shaping under CCM and DCM are based on the comparison of measured input current with linear and nonlinear carriers, respectively. A load current feedforward scheme is presented to improve the system dynamic performance and also to ensure a smooth transition between the two operating modes. All the necessary control operations are performed without using multiplication, division and square-root operation. The proposed rectifier shows improved input current characteristics over the existing CCM converters for the above load range. This is validated on a 600-W rectifier prototype. Simulation and experimental results are presented  相似文献   

18.
The buck unity-power-factor rectifier has harmonic-free input current with complete load regulation down to zero output voltage. A new “nonlinear ripple feedback” is proposed which exactly cancels the spoiling effect of DC-side current ripple on the low-distortion AC line current waveforms, even for large amounts of ripple. This cancellation is independent of operating point and readily implemented with analog hardware, thereby permitting economies in the design of the DC filter while maintaining harmonic-free operation. Both large-signal and incremental analyses of the rectifier are given. Confirming experimental results from a 1 kW 48 V isolated battery charger operating with current-ripple levels ranging from 50% to discontinuous-conduction-mode operation are given  相似文献   

19.
为了实现网侧电流正弦化及输入端高功率因数,针对单相三电平PWM整流器,本文首先分析了单相三电平PWM整流器的工作原理,给出了控制系统的总体控制思想,为了减少直流侧电压、网侧电压、网侧电流因传感器采样误差和电磁干扰等因素产生的高次谐波,探讨了一种适用于单相PWM整流器谐波抑制的数字滤波器设计方法,实验验证了该算法的有效性。  相似文献   

20.
Pulsewidth modulated (PWM) current-source rectifiers (CSR), among other alternatives, offer marked improvements over thyristor line-commutated rectifiers as a source of variable DC power. Advantages include reduced line current harmonic distortion and complete displacement power factor control, including unity displacement power factor operation. However, due to nonlinearities of the PWM-CSR model, their control has usually been carried out using direct line current control in a three-phase stationary frame (abc). This paper proposes the application of a nonlinear control technique that introduces more flexibility in the control of the rectifier and results in a more straightforward approach to controller design. The proposed technique is based on a nonlinear state variable feedback approach in the rotating frame (dq). The approach allows the independent control of the two components of the line current (active and reactive) with the same dynamic performance, regardless of the operating point. The control strategy also eliminates the need for input damping resistors and rejects the effect of supply voltage variations. Furthermore, a space vector modulation (SVM) technique is used to maximize the supply voltage utilization. This paper includes a complete formulation of the system equations and a controller design procedure. Experimental results on a 2 kVA digital-signal-processor-controlled prototype confirm the validity of theoretical considerations  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号