首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Because of the excellent thermal and mechanical properties of engineering ceramics, they have been used as structural materials or composite matrixes and reinforcements in recent years. Alumina, titanium diboride, and zirconium diboride have found important uses in the past two decades. In this study, Al2O3/(ZrB2 + TiB2) ceramic composite powders were fabricated in situ and mechanical activation by milling was used to assist combustion synthesis (CS). A mixture of Al, ZrO2, TiO2, and B2O3 powders were used as raw materials. Mechanical activation was done using ball milling of different durations. Afterward, combustion was initiated using microwaves on the activated mixtures. X-ray diffraction (XRD) and scanning electron microscopy were used to investigate the purity and microstructure of the products. XRD analysis of the samples in the final stages of the process revealed that Al2O3/(ZrB2 + TiB2) composite powder was successfully fabricated using mechanical activation and CS, but that the CS reaction did not occur in unmilled samples. It was shown that increasing milling time from 3 to 10 hours increased purity and homogeneity of the products to the point that no noticeable impurity existed in the samples milled for 10 hours.  相似文献   

2.
Over the years, the attention of material scientists and engineers has shifted from conventional composite materials to nanocomposite materials for the development of light weight and high-performance devices. Since the discovery of carbon nanotubes (CNTs), many researchers have tried to fabricate metal matrix composites (MMCs) with CNT reinforcements. However, CNTs exhibit low dispersibility in metal melts owing to their poor wettability and large surface-to-volume ratio. The use of an array of short fibers or hybrid reinforcements in a preform could overcome this problem and enhance the dispersion of CNTs in the matrix. In this study, multi-walled CNT/Al2O3 preform-based aluminum hybrid composites were fabricated using the infiltration method. Then, the composites were extruded to evaluate changes in its mechanical properties. In addition, the dispersion of reinforcements was investigated using a hardness test. The required extrusion pressure of hybrid MMCs increased as the Al2O3/CNT fraction increased. The deformation resistance of hybrid material was over two times that of the original A356 aluminum alloy material due to strengthening by the Al2O3/CNTs reinforcements. In addition, an unusual trend was detected; primary transition was induced by the hybrid reinforcements, as can be observed in the pressure–displacement curve. Increasing temperature of the material can help increase formability. In particular, temperatures under 623 K (350 °C) and over-incorporating reinforcements (Al2O3 20 pct, CNTs 3 pct) are not recommended owing to a significant increase in the brittleness of the hybrid material.  相似文献   

3.
The purpose of the present study was to develop a wear-resistant, light Al-Al3Ti composite material. An Al-Al3Ti composite specimen was machined from a thick-walled tube of Al-Al3Ti functionally graded material (FGM) manufactured by the centrifugal method from a commercial ingot of Al-5 mass pct Ti master alloy. The alloy was heated to a temperature where solid Al3Ti particles resided in a liquid Al matrix, and then the centrifugal method was carried out. Al3Ti particles in a commercial alloy ingot exist as platelets, and this shape was maintained through the casting. Three kinds of wear specimens were prepared, taking into account the morphology of the Al3Ti particles in the thick-walled FGM tube; the Al3Ti particles were arranged with their platelet planes nearly normal to the radial direction as a result of the applied centrifugal force. The wear resistance of the Al-Al3Ti composite was significantly higher than that of pure Al. Wear-resistance anisotropy and dissolution of the Al3Ti into the Al matrix at the near-surface region, around 100 μm in depth, were also observed. The mechanism of the supersaturated-layer formation and the origin of the anisotropic wear resistance are discussed.  相似文献   

4.
This study investigated the interfacial reaction kinetics and related phenomena between CaO-SiO2-MgO-Al2O3 flux and Fe-xMn-yAl (x = 10 and 20 mass pct, y = 1, 3, and 6 mass pct) steel, which simulates transformation-induced plasticity (TRIP) and twinning-induced plasticity (TWIP) steels at 1873 K (1600 °C). It also examines the effect of changes in the composition of the steel and slag phases on the interfacial reaction rate and the reaction mechanisms. The content of Al and Si in the 1 mass pct Al-containing steel was found to change rapidly within the first 15 minutes of the reaction, but then it remained relatively constant. The content of Al and Si in the 3 to 6 mass pct Al-containing steels, in contrast, changed continuously throughout the entire reaction time. In addition, the content of Mn in the 1 mass pct Al-containing steels initially decreased with increasing time, but the content did not change in the 3 to 6 mass pct Al-containing steels. Furthermore, the mass transfer coefficient of Al, k Al, in the 1 mass pct Al-containing systems was significantly higher than that in other systems; i.e., the k Al can be arranged such that 1 mass pct Al systems >> 3 mass pct Al systems ≥ 6 mass pct Al systems. The compositions of the final slags were close to the saturation lines of the [Mg,Mn]Al2O4 and MgAl2O4 spinels when the slags reacted with 1 mass pct Al and 3 to 6 mass pct Al-containing steels, respectively. These results, which show the effect of Al content on the reaction phenomena, can be explained by the significant increase in the apparent viscosity of the slags that reacted with the 3 to 6 mass pct Al-containing steels. This reaction was likely caused by the precipitation of solid compounds such as MgAl2O4 spinel and CaAl4O7 grossite at locally alumina-enriched areas in the slag phase. This analysis is in good accordance with the combination of Higbie’s surface renewal model and the Eyring equation.  相似文献   

5.
The basic aim of the present investigation is to study the role of particle size for high-temperature application of ZrSiO4-reinforced aluminum-based LM13 alloy composite as a bearing material. Composites containing 15 wt pct ZrSiO4 particles of two different size ranges (20 to 32 and 106 to 125 μm) in different proportion were prepared by the stir casting route. The microhardness measured at different areas indicates good interfacial bonding. Transition in the wear mode for all composites occurs after temperature 423 K (150 °C). The overall wear properties of DPS-2 composite containing 12 pct fine and 3 pct coarse particles are better at all temperatures for both low and high loads.  相似文献   

6.
A reciprocating extrusion process was developed to consolidate 6061-Al2O3p composites from mixed powders. The 6061 alloy powder was first dehydrated in a vacuum chamber at 450 °C and then mixed with 12.5 μm Al2O3 powder in various volume fractions: 0, 5, 10, 20, and 30 pct. The mixed powders were hot pressed at 300 °C under a pressure of 300 MPa and finally extruded reciprocatingly 14 times at 460 °C. The results show that the composites were fully densified, with no sign of pores or oxide layers observable in the optical microscope. The Al2O3 particles were distributed uniformly in the matrix. As compared with 6061 alloys, the composites demonstrated a smaller precipitation hardening and elongation, but exhibited a higher Young’s modulus and a larger work hardening capacity. The degradation of precipitation hardening was due to the loss of Mg, which reacts with Al2O3 to form MgAl2O4. The large work-hardening capacity is attributable to the incompatibility between Al2O3 and the matrix, which possibly generates more dislocations to harden the matrix. The composites had much higher friction coefficients and greater wear resistances than the 6061 alloy against steel disc surface. The friction coefficient of the 6061-30 vol pct Al2O3p composite was double that of the 6061 alloy and the wear resistance was 100-fold. As compared with similar composites reported previously, these composites possessed much higher elongation at the same strength level. A 30 vol pct Al2O3p still displayed an elongation of 9.8 pct in the T6 condition. All of these improvements are attributed to the merits, including full densification of the bulk, uniform dispersion of the Al2O3 particles in the matrix, and strong binding between the Al2O3 particles and the matrix resulting from reciprocating extrusion.  相似文献   

7.
In the current research, the dry sliding wear behaviors of 6351 Al alloy and its composite with hybrid reinforcement (ex situ SiC and in situ Al4SiC4) were investigated at low sliding speed (1 m s?1) against a hardened EN 31 disk at different loads. The wear mechanism involved adhesion and microcutting-abrasion at lower load. On the other hand, at higher load, abrasive wear involving microcutting and microplowing along with adherent oxide formation was observed. Initially, under higher load, the abrasive wear mechanism caused rapid wear loss up to a certain sliding distance. Afterward, by virtue of frictional heat generation and associated temperature rise, an adherent oxide layer was developed at the pin surface which drastically reduced the wear loss. The overall wear rate increased with load in alloy as well as in composite. Moreover, the overall wear rate of the composite was found lower than that of the 6351 Al alloy at all applied loads. The ex situ SiC particles were found to resist abrasive wear, while, in situ Al4SiC4 particles offered resistance to adhesive wear. Accordingly, the 6351 Al (SiC + Al4SiC4) hybrid composite exhibited superior wear resistance relative to the 6351 Al alloy.  相似文献   

8.
A possibility to make near-net-shape functionally graded material (FGM) products has been examined. The FGM billets having a graded volume fraction of Al3Ni in thickness direction were machined from an Al-Al3Ni FGM thick-walled tube manufactured by a vacuum centrifugal method. Billets, which were set in the container for the backward extruding, were heated to 650 °C to 680 °C, at which temperature the FGM becomes a mixture of molten aluminum eutectic and solid intermetallics. Then, billets were extruded successfully to FGM cups by a semisolid forming, except at 650 °C. Residual bulky Al3Ni particles are found at higher temperature. Thus, an optimum operation temperature is found to be around 660 °C, because bulky Al3Ni particles transform to fine spheroidal or fibrous shape after the forming. The volume fraction of intermetallics at the bottom region of the cup was condensed more than 60 vol pct in a proper billet setting.  相似文献   

9.
A Ghatshila chalcopyrite concentrate (average particle size, 50 μm) containing primarily CuFeS2 and SiO2 (Cu 16 pct, Fe 26 pct, S 14 pct, Si 5 pct, and O 33 pct) was reduced by a stream of hydrogen in a horizontal tube furnace at 1323 K (1050 °C), producing a mixture of Cu (26 pct), SiO2, Fe2O3, Fe3O4, Cu2O, and Fe. Subsequent acid leaching with 1 M HCl solution of the reduction product removed all iron oxides and iron, and other impurities too, leaving a Cu (53.3 pct) + SiO2 mixture, with a small percentage of Cu2O in it. This result compares well with the predicted final mixture of Cu (59 pct)-SiO2 based on a mass balance on the starting concentrate. Elemental chemical analyses were done by energy-dispersive X-ray spectroscopy, which were crosschecked by atomic absorption spectroscopy in the majority of cases. The phase identification and microstructural characterization of Cu-SiO2 mixtures were done by X-ray diffraction, Fourier transform infrared spectroscopy, Rietveld analysis, scanning electron microscopy, and high-resolution transmission electron microscopy (HRTEM). It was found that Cu-SiO2 composites were formed in the final product, with a copper grain size of 385 nm.  相似文献   

10.
Several alloys based on Fe-25Cr-6Al and Fe-25Cr-11Al (wt pct) with additions of yttrium, Al2O3, and Y2O3 have been prepared by mechanical alloying of elemental, master alloy and oxide powders. The powders were consolidated by extrusion at 1000°C with a reduction ratio of 36:1. The resulting oxide contents were all approximately either 3 vol pct or 8 vol pct of mixed Al2O3-Y2O3 oxides or of Al2O3. The alloys exhibited substantial ductility at 600°C: an alloy containing 3 vol pct oxide could be readily warm worked to sheet without intermediate annealing; an 8 vol pct alloy required intermediate annealing at 1100°C. The 3 vol pct alloys could be recrystallized to produce large elongated grains by isothermal annealing of as-extruded material at 1450°C, but the high temperature strength properties were not improved. However, these alloys, together with some of the 8 vol pct materials, could be more readily recrystallized after rod (or sheet) rolling; sub-stantially improved tensile and stress rupture properties were obtained following 9 pct rod rolling at 620°C and isothermal annealing for 2 h at 1350°C. In this condition, the rup-ture strengths of selected alloys at 1000 and 1100°C were superior to those of competitive nickel-and cobalt-base superalloys. The oxidation resistance of all the alloys was ex-cellent. F. G. WILSON and C. D. DESFORGES, formerly with Fulmer Re-search Institute  相似文献   

11.
The effect of Al2O3 and CaO/SiO2 on the viscosity of the CaO-SiO2-10 mass pct MgO-Al2O3 slags was studied at fully liquid temperatures of 1773 K (1500 °C) and below. At fixed CaO/SiO2 between 0.8 and 1.3, higher Al2O3 content increased the slag viscosity due to the polymerization of the aluminate structures. At fixed Al2O3 of 15 and 20 mass pct, increasing the CaO/SiO2 from 0.8 to 1.3 resulted in lower viscosity due to the depolymerization of the aluminate structure.  相似文献   

12.
A theoretical model of the creep behavior of metal matrix composites having strong fiber-matrix interfaces is described in terms of creep parameters of the matrix and fibers. The available experimental data, obtained from the unidirectionally solidified aluminum-nickel eutectic containing 10 vol pct Al3Ni fibers, are in good agreement with the theoretical model. The creep activation energy of the composite is described in terms of the creep activation energy of fibers and the matrix. The experimentally de-termined data of (Co, Cr)-(Co, Cr)7C3 and Al-Al3Ni eutectics are in agreement with those values as predicted.  相似文献   

13.
In the current study, the effect of S content in the molten steel on inclusions during calcium treatment was studied using an induction furnace. The calcium in steel decreased from 48 to 2 ppm, and the sulfur in steel changed a little with time. When sulfur content in steel was as low as 25 ppm during calcium treatment, inclusions shifted from CaO-Al2O3-CaS to Al2O3-CaO with about 35 pct CaO. When the sulfur increased over 90 ppm, more CaS-CaO formed just after the addition of calcium, and then the CaS content decreased from over 45 pct to lower than 15 pct and inclusions were mostly Al2O3-CaO-CaS and Al2O3-CaO with a high Al2O3 content. Thermodynamic calculation predicted the variation of the composition of inclusions, indicating good agreement with the measurement, while a certain deviation existed, especially for heats with 90 and 180 ppm sulfur. A reaction model was proposed for the formation of CaO and CaS, which considered the reaction between calcium vapor bubbles in the zone and the dissolved oxygen and sulfur in the molten steel, as described by a Langmuir-type adsorption isotherm with a reaction occurring on the remaining vacant sites. The variation of transient CaS inclusions was discussed based on the thermodynamic calculation and the morphology evolution of typical inclusions containing CaS.  相似文献   

14.
The development of manufacturing technology of Sn-bearing stainless steel inspires a novel concept for using Sn-bearing complex iron ore via reduction with mixed H2/CO gas to prepare Sn-enriched direct reduced iron (DRI). The thermodynamic analysis of the reduction process confirms the easy reduction of stannic oxide to metallic tin and the rigorous conditions for volatilizing SnO. Although the removal of tin is feasible by reduction of the pellet at 1223 K (950 °C) with mixed gas of 5 vol pct H2, 28.5 vol pct CO, and 66.5 vol pct CO2 (CO/(CO + CO2) = 30 pct), it is necessary that the pellet be further reduced for preparing DRI. In contrast, maintaining Sn in the metallic pellet is demonstrated to be a promising way to effectively use the ore. It is indicated that only 5.5 pct of Sn is volatilized when the pellet is reduced at 1223 K (950 °C) for 30 minutes with the mixed gas of 50 vol pct H2, 50 vol pct CO (CO/(CO + CO2) = 100 pct). A metallic pellet (Sn-bearing DRI) with Sn content of 0.293 pct, Fe metallization of 93.5 pct, and total iron content of 88.2 pct is prepared as a raw material for producing Sn-bearing stainless steel. The reduced tin in the Sn-bearing DRI either combines with metallic iron to form Sn-Fe alloy or it remains intact.  相似文献   

15.
The investment casting process is an economic production method for engineering components in TiAl-based alloys and offers the benefits of a near net-shaped component with a good surface finish. An investigation was undertaken to develop three new face coat systems based on yttria, but with better sintering properties. These face coat systems were mainly based on an yttria-alumina-zirconia system (Y2O3-0.5 wt pct Al2O3-0.5 wt pct ZrO2), an yttria-fluoride system (Y2O3-0.15 wt pct YF3), and an yttria-boride system (Y2O3-0.15 wt pct B2O3). After sintering, the chemical inertness of the face coat was first tested and analyzed using a sessile drop test through the metal wetting behavioral change for each face coat surface. Then, the interactions between the shell and metal were studied by centrifugal investment casting TiAl bars. Although the sintering aids in yttria can decrease the chemical inertness of the face coat, the thickness of the interaction layer in the casting was less than 10 μm; therefore, these face coats still can be possible face coat materials for investment casting TiAl alloys.  相似文献   

16.
Particulate TiB2 reinforced aluminum-based metal matrix composites (MMCs) were successfully fabricated by means of the reaction processing method. TiB2 particulates were formed in situ through the reaction of Ti and B in Ti-Al-B, TiO2 and B in TiO2-Al-B, and TiO2 and B2O3 in TiO2-Al-B2O3 systems. The results showed that in situ TiB2 particulates formed in the Ti-Al-B system had a size of 5 μm and they exhibited block and rodlike structures. Moreover, coarse Al3Ti blocks several tens of micrometers in size were also formed simultaneously. On the other hand, equiaxed Al2O3 and TiB2 particulates with a size of less than 2 μm were formed in situ in the TiO2-Al-B and TiO2-Al-B2O3 systems. The Al3Ti phase was completely eliminated in the TiO2-Al-B system with increasing B content. Tensile tests revealed that the Al2O3 · TiB2/Al composite fabricated from the TiO2-Al-B system exhibits excellent mechanical properties. The yield strength of the Al2O3 · TiB2/Al composite appeared to increase with increasing TiB2 content. The yield strength of the Al2O3 · TiB2/Al composite could be further increased by introducing CuO into the TiO2-Al-B system. Such an increment in mechanical strength arose from the strengthening effect caused by the Al2Cu precipitates. The incorporation of CuO had no effect on the in situ reaction process of the TiO2-Al-B system. Finally, the effect of SiC addition on the microstructure and mechanical properties of the composites fabricated from the TiO2-Al-B and TiO2-Al-B-CuO systems was also investigated.  相似文献   

17.
A Fe3Al-Fe3AlC x composite was prepared using reactive liquid processing (RLP) through controlled mixture of carbon steel and aluminum in the liquid state. The microstructure and phases of the composite were assessed using X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray spectroscopy, optical microscopy, and differential scanning calorimetry. In addition, the density, hardness, microhardness, and elastic modulus were evaluated. The Fe3Al-Fe3AlC x composite consisted of 65 vol pct Fe3Al and 35 vol pct Fe3AlC x (κ). The κ phase contained 10.62 at. pct C, resulting in the stoichiometry Fe3AlC0.475. The elastic modulus of the Fe3Al-Fe3AlC0.475 composite followed the rule of mixtures. The RLP technique was shown to be capable of producing Fe3Al-Fe3AlC0.475 with a microstructure and properties similar to those achieved using other processing techniques reported in the literature.  相似文献   

18.
Al2O3-Al(Si) and Al2O3-Al(Si)-Si composites have been formed byin situ reaction of molten Al with aluminosilicate ceramics. This reactive metal penetration (RMP) process is driven by a strongly negative Gibbs energy for reaction. In the Al/mullite system, Al reduces mullite to produce α-Al2O3 and elemental Si. With excess Al (i.e., x > 0), a composite of α-Al2O3, Al(Si) alloy, and Si can be formed. Ceramic-metal composites containing up to 30 vol pct Al(Si) were prepared by reacting molten Al with dense, aluminosilicate ceramic preforms or by reactively hot pressing Al and mullite powder mixtures. Both reactive metal-forming techniques produce ceramic composite bodies consisting of a fine-grained alumina skeleton with an interpenetrating Al(Si) metal phase. The rigid alumina ceramic skeletal structure dominates composite physical properties such as the Young’s modulus, hardness, and the coefficient of thermal expansion, while the interpenetrating ductile Al(Si) metal phase contributes to composite fracture toughness. Microstructural analysis of composite fracture surfaces shows evidence of ductile metal failure of Al(Si) ligaments. Al2O3-Al(Si) and Al2O3-Al(Si)-Si composites produced byin situ reaction of aluminum with mullite have improved mechanical properties and increased stiffness relative to dense mullite, and composite fracture toughness increases with increasing Al(Si) content. This article is based on a presentation made in the “In Situ Reactions for Synthesis of Composites, Ceramics, and Intermetallics” symposium, held February 12–16, 1995, at the TMS Annual Meeting in Las Vegas, Nevada, under the auspices of SMD and ASM-MSD (the ASM/TMS Composites and TMS Powder Materials Committees).  相似文献   

19.
The effect of hot-rolling on the mechanical properties and microstructures of chill-cast Al-Al3Ni, chill-cast Al-Al2Cu, and unidirectionally solidified Al-Al3Ni eutectic alloys has been studied. The chill-cast eutectic alloys were produced by casting into preheated mild steel molds placed on copper chills. This system promoted growth along the length of the ingot and not radially from the mold wall. Cellular microstructures resulted with good alignment of Al3Ni fibers or Al2Cu lamellae within the cells and an interfiber/lamellar spacing of ~ 1 /urn. In contrast, the Al-Al3Ni eutectic alloy was also unidirectionally solidified at a growth rate of 3 x 10-1 m s-1 in a conventional horizontal crystal grower. This produced well-aligned Al3Ni fibers with an interfiber spacing of 1.2 ώm. Both the unidirectionally solidified and chill-cast Al-Al3Ni eutectic alloy can be hot-rolled at 773 K to reductions in area of greater than 95 pct. Deformation was achieved by Al3Ni fiber fracturing followed by separation of the broken fiber fragments in the rolling direction. Additionally, for the chill-cast eutectic the cellular microstructure disappeared and the Al3Ni fibers were homogeneously distributed throughout the matrix, after area reductions of 60 to 70 pct. In both cases, the eutectic microstructure was deformed with a constant volume fraction of Al3Ni/unit volume being maintained during rolling. The chill-cast Al-Al2Cu eutectic alloy can be hot-rolled at 773 K to an area reduction of ~50 pct, after the continuous brittle Al2Cu phase within the cells has been ‘broken up’ by coarsening at high temperature. The variations of room temperature tensile properties for the chill-cast and unidirectionally solidified eutectic alloys were measured as a function of reduction of thickness during hot-rolling and the results were compared with predicted strengths from discontinuous fiber reinforcement theory. Formerly with the Department of Engineering and Applied Sciences, Sussex University, Falmer, Brighton, BNl 9QT, Sussex, United Kingdom,  相似文献   

20.
The formation and coarsening of Al2O3 dispersoids have been investigated at 500 °C, 550 °C, and 600 °C in a mechanically alloyed (MA) extrusion of composition Al-0.35wt pct Li-1wt pct Mg-0.25wt pct C-10vol pct TiO2 for times up to 1500 hours. In the as-extruded condition, the dispersed phases included Al3Ti, Al4C3, MgO, cubic TiO (C-TiO), monoclinic TiO (M-TiO), TiO2, and a small amount of Al2O3. However, numerous Al2O3 dispersoids (various polymorphs: η, γ, α, and δ) with “block-shaped” morphology were formed after heat treatment due to reduction of C-TiO, M-TiO, and TiO2. Transmission electron microscopy (TEM) and X-ray diffraction (XRD) showed conclusively the transformation of these phases to additional Al2O3 and Al3Ti. High resolution TEM showed that the α-Al2O3 dispersoids exhibited some lattice matching with the α-Al matrix. Coalescence of the block-shaped Al2O3 dispersoids occurred after heat treatment, and Al4C3 also became attached to them. The length and width of the block-shaped Al2O3 dispersoids increased by a factor of ∼1.55 between 340 and 1500 hours at 600 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号