首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Passive Q switching of a diode-pumped Nd(3+):KGd(WO(4))(2) laser is demonstrated by use of Cr(4+):SrGd(4)(SiO(4))(3)O and Cr(4+):CaGd(4)(SiO(4))(3)O crystals as saturable absorbers. An average output power of 40 mW was obtained with a pulse repetition rate of ~0.4 MHz.  相似文献   

2.
The performances of a coordination polymerization precipitant, N,N'-bis-(dithiocarboxy)piperazine (BDP) were compared with the widely used heavy metal precipitant, diethyldithiocarbamate (DDTC), through the treatment of three kinds of nickel-containing wastewaters, NiSO(4), nickel citrate (NiCA) and Ni(2+)-dye. Results indicated that both BDP and DDTC at their stiochiometric doses could reduce 50.00 mg l(-1) free nickel(II) to lower than 1.0 mg l(-1) (discharge limit of nickel ions in China) and 10% precipitants doses increase could treat NiCA containing 50.00 mg l(-1) Ni(2+) to meet the discharge limit. But [NiBDP](n) coordination polymerization precipitates had more rapid settling speed than Ni(DDTC)(2) precipitates. It was also observed that BDP could still partly remove Reactive Brilliant Red X-3B from Ni(II)-dye integrated wastewater through the adsorption of the precipitates [NiBDP](n), in addition to precipitating Ni(II). A 1:1 stiochiometric dose of BDP/Ni(II) could decrease Ni(II) from 50.00 to 0.87 mg l(-1), and simultaneously reduce the dye from 30.00 to 19.52 mg l(-1).  相似文献   

3.
Evanescent wave excitation of fluorescence was used to study the adsorption of Ru(bpy)(3)(2+) from aqueous solution to three types of surfaces: bare silica, a dimethylethylsiloxane (C(2)) monolayer on silica, and a dimethyloctadecylsiloxane (C(18)) monolayer on silica. The solution pH was varied to investigate the nonpolar and electrostatic contributions to the free energy of adsorption for each surface. The pH dependence of the adsorption showed that the pK(a) is the same for each of the three surfaces, consistent with earlier conclusions that the acidity of derivatized silica surfaces is due to areas of exposed silica. The free energies of adsorption for the bare silica surface, -26.2(±0.2) kJ/mol at pH 8, was attributed to electrostatic interactions alone. The free energy of adsorption for the C(2) and C(18) surfaces, -28.5(±0.1) and -31.5(±0.1) kJ/mol, respectively, were found to have both electrostatic and nonpolar contributions, with the latter being larger by 50% for the C(2) surface and 100% for the C(18) surface. Using Gouy-Chapman theory, the surface charge densities on each of the three surfaces, calculated from the electrostatic interaction energy of Ru(bpy)(3)(2+), were found to be within the range of literature values: 8.8(±0.1) × 10(-)(7) mol/m(2) for bare silica and 1.7(±0.1) × 10(-)(7) mol/m(2) for both the C(18) and C(2) surfaces. The results demonstrate that a cationic dye can be used to probe the silanol activity of chemically modified silica surfaces. The results support the picture that these chemically modified silica surfaces are acidic due to molecular-scale areas of contact between the bare silica substrate and the aqueous phase.  相似文献   

4.
Metal nitrate complexes of general formula [M(dah)(2)](NO(3))(2) (where M=Zn, Cu and Ni; dah=1,6-diaminohexane) have been prepared and characterized by elemental analysis, infrared spectroscopy (IR) and gravimetric method. The thermal decomposition has been studied using thermogravimetry (TG). Simultaneous thermogravimetry-differential thermogravimetry-differential thermal analysis (TG-DTG-DTA) and differential scanning calorimetry (DSC) were done in N(2) atmosphere. Isothermal TG of initial decomposition of all these complexes, have been carried out to evaluate the kinetics of early thermolysis. Both, model fitting and isoconversional method have been used for the evaluation of the kinetics of thermal decomposition. Model fitting method have given the single value of activation energy (E) whereas, isoconversional method yields a series of E-value, which vary with extent of conversion. Ignition of the complexes was measured to see the response towards rapid heating with varying amounts. The thermal stability of the complexes was found to be in the order as [Zn(dah)(2)](NO(3))(2)>[Cu(dah)(2)](NO(3))(2) approximately [Ni(dah)(2)](NO(3))(2).  相似文献   

5.
Zhang J  Guo SX  Bond AM  Marken F 《Analytical chemistry》2004,76(13):3619-3629
Significant advantages of Fourier transformed large-amplitude ac higher (second to eighth) harmonics relative to responses obtained with conventional small-amplitude ac or dc cyclic voltammetric methods have been demonstrated with respect to (i) the suppression of capacitive background currents, (ii) the separation of the reversible reduction of [Ru(NH(3))(6)](3+) from the overlapping irreversible oxygen reduction process under conditions where aerobic oxygen remains present in the electrochemical cell, and (iii) the kinetic resolution of the reversible [Ru(NH(3))(6)](3+/2+) process in mixtures of [Fe(CN)(6)](3-) and [Ru(NH(3))(6)](3+) at appropriately treated boron-doped diamond electrodes, even when highly unfavorable [Fe(CN)(6)](3-) to [Ru(NH(3))(6)](3+) concentration ratios are employed. Theoretical support for the basis of kinetic discrimination in large-amplitude higher harmonic ac cyclic voltammetry is provided.  相似文献   

6.
A batch method was used to investigate the uptake of heavy metal cations and anions by the compounds in the CaTiO(3)-CaFeO(2.5) system, in which a series of oxygen vacancies was systematically introduced into a perovskite structure as the x-value of Ca(Fe(x)Ti(1-x))O(3-x/2) was increased. Samples of CaTiO(3), CaFe(0.1)Ti(0.9)O(2.95), CaFe(0.5)Ti(0.5)O(2.75), CaFe(0.67)Ti(0.33)O(2.67) and CaFeO(2.5) were prepared by solid mixing (SM), co-precipitation (CP) and gel evaporation (GE) methods. The resulting samples were calcined at temperatures between 400 and 1000 °C. The target crystalline phases differed according to the preparation method, but in most cases were formed at 700-800 °C. The Ni(2+) sorption isotherms of all the samples were fitted better by the Langmuir model than by the Freundlich model, while in the case of H(2)PO(4)(-) sorption isotherms, these were better fitted by the latter model. The uptake ability increased with increasing x value of the samples. The maximum values for the saturated sorption of Ni(2+) (Q(0)(Ni(2+)) = 2.83 mmol/g) and H(2)PO(4)(-) (K(F)(H(2)PO(4)(-)) = 2.95 mmol/g) were achieved for x = 1 (i.e. CaFeO(2.5)) sample.  相似文献   

7.
Two exceedingly stable [Ru(bipy)(3)](3+) reagents were prepared by dissolving either [Ru(bipy)(3)](ClO(4))(2) in acetonitrile (containing 0.05 M HClO(4)) or [Ru(bipy)(3)]Cl(2)·6H(2)O in 95:5 glacial acetic acid-acetic anhydride (containing 0.05 M H(2)SO(4)) followed by oxidation with PbO(2). These conveniently prepared solutions provide highly reproducible chemiluminescence detection over long periods of analysis, avoiding the need for recalibration or preparation of fresh reagent solutions and without the complications associated with online chemical or electrochemical oxidations. The reagent prepared in acetonitrile produced much greater signal intensities with a range of analytes and was deemed most suitable for high-performance liquid chromatography (HPLC) with postcolumn chemiluminescence detection.  相似文献   

8.
Four complexes are prepared and characterized having molecular formula [Zn(dab)(2)](NO(3))(2), [Cu(dab)(2)](NO(3))(2).H(2)O, [Ni(dab)(2)](NO(3))(2).2H(2)O and [Mn(dab)(2)](NO(3))(2), where dab: 1,4-diaminobutane. Thermolyses of these complexes were investigated by simultaneous thermogravimetry (TG), derivatives thermogravimetry (DTG), differential thermal analysis (DTA) and differential scanning calorimetry (DSC). The kinetics of the thermolysis at early stages is investigated using isothermal TG by applying model-fitting and isoconversional method. Thermolytic process is slow in inert (N(2)) and is fast in air atmosphere due to oxidative nature. To investigate the response of these complexes under the condition of rapid heating, ignition delay (D(i)) has been measured. Thermal stability of the complexes was found to increase in the order Mn < Cu < Ni < Zn.  相似文献   

9.
A spectroelectrochemical sensor consisting of an indium tin oxide (ITO) optically transparent electrode (OTE) coated with a thin film of partially sulfonated polystyrene-blockpoly(ethylene-ran-butylene)-block-polystyrene (SSEBS) was developed for [Tc(dmpe)(3)](+) (dmpe = 1,2-bis(dimethylphosphino)ethane). [Tc(dmpe)(3)](+) was preconcentrated by ion-exchange into the SSEBS film after a 20 min exposure to aqueous [Tc(dmpe)(3)](+) solution, resulting in a 14-fold increase in cathodic peak current compared to a bare OTE. Colorless [Tc(dmpe)(3)](+) was reversibly oxidized to colored [Tc(dmpe)(3)](2+) by cyclic voltammetry. Detection of [Tc(dmpe)(3)](2+) was accomplished through emission spectroscopy by electrochemically oxidizing the complex from nonemissive [Tc(dmpe)(3)](+) to emissive [Tc(dmpe)(3)](2+). The working principle of the sensor consisted of electrochemically cycling between nonemissive [Tc(dmpe)(3)](+) and emissive [Tc(dmpe)(3)](2+) and monitoring the modulated emission (λ(exc) = 532 nm; λ(em) = 660 nm). The sensor gave a linear response over the concentration range of 0.16-340.0 μM of [Tc(dmpe)(3)](2+/+) in aqueous phase with a detection limit of 24 nM.  相似文献   

10.
Equilibrium study of ion-pair extraction of a cationic water-soluble porphyrin [5,10,15,20-tetrakis(1-methylpyridinium-4-yl)porphyrin, H(2)tmpyp(4+)] and its metalloporphyrins (MP) into the acetonitrile layer, separated by addition of sodium chloride (4.00 mol dm(-)(3)) to a 1:1 (v/v) acetonitrile-water mixed solvent, was carried out to develop a new and useful method for the determination of a subnanogram amount of copper(II). M denotes Zn(2+), Cu(2+), Co(3+), Fe(3+), and Mn(3+), and P(2)(-) is porphyrinate ion. The extraction and dissociation constants of the ion-pair complexes, defined by K(ex) = [MP(ClO(4))(4)](org)[MP(4+)](aq)(-)(1)[ClO(4)(-)](aq)(-)(4), K(dis,1) = [MP(ClO(4))(3)(+)](org)[ClO(4)(-)](org)[MP(ClO(4))(4)](org)(-)(1), and K(dis,2) = [MP(ClO(4))(2)(2+)](org)[ClO(4)(-)](org)[MP(ClO(4))(3)(+)](org)(-)(1), were determined by taking into account the partition constant of sodium perchlorate (K(D) = 1.82 ± 0.01). The equilibrium constants were found to be K(ex)K(dis,1) = (7.2 ± 1.3) × 10(4), (6.4 ± 0.9) × 10(4), (1.35 ± 0.13) × 10(5), (4.8 ± 0.6) × 10(3), (1.23 ± 0.05) × 10(4), and (1.42 ± 0.07) × 10(3) at 25 °C for the free base porphyrin (H(2)tmpyp(4+)) and the metalloporphyrins of zinc(II), copper(II), cobalt(III), iron(III), and manganese(III), respectively. The K(dis,2) values were (2.9 ± 1.4) × 10(-)(2), (3.1 ± 1.1) × 10(-)(2), (8.0 ± 4.9) × 10(-)(3), and (5.1 ± 2.2) × 10(-)(2) for the free base porphyrins and the metalloporphyrins of zinc(II), copper(II), and cobalt(III), respectively. The results were developed for determination of a trace amount of copper(II) (3 × 10(-)(8)-4 × 10(-)(6) mol dm(-)(3)) in natural water samples using H(2)tmpyp(4+) with a molar absorptivity of 3.1 × 10(5) mol(-)(1) dm(3) cm(-)(1) at a precision of 1.3% (RSD). The determination of copper(II) was not interfered by the presence of 10(-)(4) mol dm(-)(3) of Mn(2+), Co(2+), Ni(2+), Hg(2+), Cd(2+), Ag(+), Cr(3+), V(5+), Al(3+), Mg(2+), Ca(2+), Br(-), I(-), SCN(-), and S(2)O(3)(2)(-) and 10(-)(5) mol dm(-)(3) of Fe(3+), Zn(2+), and Pd(2+).  相似文献   

11.
采用气相法、液相法相结合的方法外延组装了一种形貌新颖的复杂ZnO分级纳米结构--"纳米毛刷".首先用热蒸发的方法制备了宽面为极性面的ZnO纳米带,然后采用化学溶液法,在强碱溶液中在ZnO纳米带的极性面上外延生长Zno纳米棒阵列,实现了ZnO分级纳米结构"由下而上"地外延组装.采用负离子配位多面体生长基元模型讨论了ZnO分级纳米结构的外延组装机理.这种ZnO分级结构的实现,可望作为ZnO纳米器件的原型材料构建新型光电器件.  相似文献   

12.
Beta-tricalcium phosphate (beta-TCP) powder was prepared by a two-step process: wet precipitation of apatitic tricalcium phosphate [Ca(9)(HPO(4))(PO(4))(5)(OH)] (beta-TCP 'precursor') and calcination of the precursor at 800 degrees C for 3 h to produce beta-TCP. Magnesium-substituted tricalcium phosphate (beta-TCMP) was produced by adding Mg(NO(3))(2) . 6H(2)O into Ca(NO(3))(2) solution as Mg(2+) source before the precipitation step. The transition temperature from beta-TCP to alpha-TCP increases with the increase of Mg(2+) content in beta-TCMP. beta-TCMP with 3 mol.% Mg(2+) has beta-TCP to alpha-TCP transition temperature above 1,300 degrees C. Dense beta-TCMP (3 mol.% Mg(2+)) ceramics ( approximately 99.4% relative density) were produced by pressing the green bodies at 100 MPa and further sintering at 1,250 degrees C for 2 h. The average compressive strength of dense beta-TCP ceramics sintered at 1,100 degrees C is approximately 540 MPa, while that of beta-TCMP (3 mol.% Mg(2+)) ceramics is approximately 430 MPa.  相似文献   

13.
Ni(OH)(2) and NiO nanosheets with hierarchical porous structures were synthesized by a simple chemical precipitation method using nickel chloride as precursors and urea as precipitating agent. The as-prepared samples were characterized by X-ray diffraction, scanning electron microscopy and nitrogen adsorption-desorption isotherms. Adsorption of Congo red (CR) onto the as-prepared samples from aqueous solutions was investigated and discussed. The pore structure analyses indicate that Ni(OH)(2) and NiO nanosheets are composed of at least three levels of hierarchical porous organization: small mesopores (ca. 3-5 nm), large mesopores (ca. 10-50 nm) and macropores (100-500 nm). The equilibrium adsorption data of CR on the as-prepared samples were analyzed by Langmuir and Freundlich models, suggesting that the Langmuir model provides the better correlation of the experimental data. The adsorption capacities for removal of CR was determined using the Langmuir equation and found to be 82.9, 151.7 and 39.7 mg/g for Ni(OH)(2) nanosheets, NiO nanosheets and NiO nanoparticles, respectively. Adsorption data were modeled using the pseudo-first-order, pseudo-second-order and intra-particle diffusion kinetics equations. The results indicate that pseudo-second-order kinetic equation and intra-particle diffusion model can better describe the adsorption kinetics. The as-prepared Ni(OH)(2) and NiO nanosheets are found to be effective adsorbents for the removal of Congo red pollutant from wastewater as a result of their unique hierarchical porous structures and high specific surface areas.  相似文献   

14.
This paper reports chemical-chemical (CC) and electrochemical-chemical-chemical (ECC) redox cycling, for use in ultrasensitive biosensor applications. A triple chemical amplification approach using an enzymatic reaction, CC redox cycling, and ECC redox cycling is applied toward electrochemical immunosensors of cardiac troponin I. An enzymatic reaction, in which alkaline phosphatase converts 4-aminophenyl phosphate to 4-aminophenol (AP), triggers CC redox cycling in the presence of an oxidant and a reductant, and electrochemical signals are measured with ECC redox cycling after an incubation period of time in an air-saturated solution. To obtain high, selective, and reproducible redox cycling without using redox enzymes, two redox reactions [the reaction between AP and the oxidant and the reaction between the oxidized form of AP (4-quinone imine, QI) and the reductant] should be fast, but an unwanted reaction between the oxidant and reductant should be very slow. Because species that undergo outer-sphere reactions (OSR-philic species) react slowly with species that undergo inner-sphere reactions (ISR-philic species), highly OSR-philic Ru(NH(3))(6)(3+) and highly ISR-philic tris(2-carboxyethyl)phosphine (TCEP) are chosen as the oxidant and reductant, respectively. The OSR- and ISR-philic QI/AP couple allows fast redox reactions with both the OSR-philic Ru(NH(3))(6)(3+) and the ISR-philic TCEP. Highly OSR-philic indium-tin oxide (ITO) electrodes minimize unwanted electrochemical reactions with highly ISR-philic species. Although the formal potential of the Ru(NH(3))(6)(3+)/Ru(NH(3))(6)(2+) couple is lower than that of the QI/AP couple, the endergonic reaction between Ru(NH(3))(6)(3+) and AP is driven by the highly exergonic reaction between TCEP and QI (via a coupled reaction mechanism). Overall, the "outer-sphere to inner-sphere" redox cycling in the order of highly OSR-philic ITO, highly OSR-philic Ru(NH(3))(6)(3+)/Ru(NH(3))(6)(2+) couple, OSR- and ISR-philic QI/AP couple, and highly ISR-philic TCEP allows high, selective, and reproducible signal amplification. The electrochemical data obtained by chronocoulometry permit a lower detection limits than those obtained by cyclic voltammetry. The detection limit of an immunosensor for troponin I in serum, calculated from the anodic charges in chronocoulometry, is ca. 10 fg/mL.  相似文献   

15.
The uptake of platinum and copper tetra-ammine (PTA and CTA, [(NH(3))(4)Pt](2+) and [(NH(3))(4)Cu](2+)) into zeolites was compared over silica and three zeolites (Y, MOR and MFI) with different points of zero charge and aluminium content. Adsorption was determined as a function of pH at several metal concentrations, and pH shifts relative to metal free control experiments were carefully monitored. The uptake of both metal ammine complexes onto silica is well described by electrostatic adsorption. We suggest that the metal cations interact with zeolites by two mechanisms, ion exchange at the Al exchange sites and electrostatic adsorption at silanol groups. The former is the dominant mechanism at low to mid pH, and the latter at high pH. This effect is most clearly manifested in zeolites with low aluminium content such as ZSM5; electrostatic adsorption at high pH in ZSM5 yields metal loadings much in excess of the ion exchange capacity and so gives rise to 'overexchange'. Differences between PTA and CTA can be explained by the weaker stability of the CTA complex and its response to the decrease in local pH near the adsorption plane of low PZC zeolites. This change in local pH near oxide surfaces is characteristic of electrostatic adsorption. As the local pH decreases, the CTA ion is probably converted to a dimerized copper complex, perhaps Cu(2)(OH)(2)(2+). A portion of the released ammonia is protonated, increasing the solution pH. In high PZC, high aluminium zeolites with high ion exchange capacity, there is relatively little contribution from electrostatic adsorption.  相似文献   

16.
Liu H  Wu J  Min JH  Hou P  Song AY  Kim YK 《Nanotechnology》2011,22(5):055701
The Fe(3)O(4)-Ca(3)(PO(4))(2) core-shell nanoparticles were prepared by one-pot non-aqueous nanoemulsion with the assistance of a biocompatible triblock copolymer, poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol) (PEO-PPO-PEO), integrating the magnetic properties of Fe(3)O(4) and the bioactive functions of Ca(3)(PO(4))(2) into single entities. The Fe(3)O(4) nanoparticles were pre-formed first by thermal reduction of Fe(acac)(3) and then the Ca(3)(PO(4))(2) layer was coated by simultaneous deposition of Ca(2+) and PO(4)(3-). The characterization shows that the combination of the two materials into a core-shell nanostructure retains the magnetic properties and the Ca(3)(PO(4))(2) shell forms an hcp phase (a = 7.490 ?, c = 9.534 ?) on the Fe(3)O(4) surface. The magnetic hysteresis curves of the nanoparticles were further elucidated by the Langevin equation, giving an estimation of the effective magnetic dimension of the nanoparticles and reflecting the enhanced susceptibility response as a result of the surface covering. Fourier transform infrared (FTIR) analysis provides the characteristic vibrations of Ca(3)(PO(4))(2) and the presence of the polymer surfactant on the nanoparticle surface. Moreover, the nanoparticles could be directly transferred to water and the aqueous dispersion-collection process of the nanoparticles was demonstrated for application readiness of such core-shell nanostructures in an aqueous medium. Thus, the construction of Fe(3)O(4) and Ca(3)(PO(4))(2) in the core-shell nanostructure has conspicuously led to enhanced performance and multi-functionalities, offering various possible applications of the nanoparticles.  相似文献   

17.
Ionophore-doped sensor membranes exhibit greater selectivities and wider measuring ranges when they are prepared with noncoordinating matrixes. Since fluorous phases are the least polar and least polarizable liquid phases known, a fluorous phase was used for this work as the membrane matrix for a series of ionophore-based sensors to explore the ultimate limit of selectivity. Fluorous pH electrode membranes, each comprised of perfluoroperhydrophenanthrene, sodium tetrakis[3,5-bis(perfluorohexyl)phenyl]borate, and one of four fluorophilic H(+)-selective ionophores were prepared. All the ionophores are highly fluorinated trialkylamines containing three electron withdrawing perfluoroalkyl groups shielded from the central nitrogen by alkyl spacers of varying lengths: [CF(3)(CF(2))(7)(CH(2))(3)](2)[CF(3)(CF(2))(6)CH(2)]N, [CF(3)(CF(2))(7)(CH(2))(3)](2)(CF(3)CH(2))N, [CF(3)(CF(2))(7)(CH(2))(3)](3)N, and [CF(3)(CF(2))(7)(CH(2))(5)](3)N. Their pKa values in the fluorous matrix are as high as 15.4 +/- 0.3, and the corresponding electrodes exhibit logarithmic selectivity coefficients for H(+) over K(+) as low as <-12.8. The pKa and selectivity follow the trends expected from the degree of shielding and the length of the perfluoroalkyl chains of the ionophores. These electrodes are the first fluorous ionophore-based sensors described in the literature. The selectivities of the sensor containing [CF(3)(CF(2))(7)(CH(2))(5)](3)N are not only greater than those of analogous sensors with nonfluorous membranes but were of the same magnitude as the best ionophore-based pH sensors ever reported.  相似文献   

18.
Adsorption features of UO(2)(2+) and Th(4+) ions from simulated radioactive solutions onto a novel chitosan/clinoptilolite (CS/CPL) composite as beads have been investigated compared with chitosan cross-linked with epichlorohydrin. The effects of contact time, the initial metal ion concentration, sorbent mass and temperature on the adsorption capacity of the CS-based sorbents were investigated. The adsorption kinetics was well described by the pseudo-second order equation, and the adsorption isotherms were better fitted by the Sips model. The maximum experimental adsorption capacities were 328.32 mg Th(4+)/g composite, and 408.62 mg UO(2)(2+)/g composite. The overall adsorption tendency of CS/CPL composite toward UO(2)(2+) and Th(4+) radiocations in the presence of Cu(2+), Fe(2+) and Al(3+), under competitive conditions, followed the order: Cu(2+)>UO(2)(2+)>Fe(2+)>Al(3+), and Cu(2+)>Th(4+)>Fe(2+)>Al(3+), respectively. The negative values of Gibbs free energy of adsorption indicated the spontaneity of the adsorption of radioactive ions on both the CS/CPL composite and the cross-linked CS. The desorption level of UO(2)(2+) from the composite CS/CPL, by using 0.1M Na(2)CO(3), was around 92%, and that of Th(4+) ions, performed by 0.1M HCl, was around 85%, both values being higher than the desorption level of radiocations from the cross-linked CS, which were 89% and 83%, respectively.  相似文献   

19.
Reproducible time-of-flight cluster static secondary ion mass spectra (ToF-SSIMS) were obtained for various standard calcium phosphate (CP) powders, which allowed for phase identification. X-ray diffraction was not able to detect signals from microscopic amounts of CP (~15 mmol m(-)(2)). The phases studied were α-tricalcium phosphate [α-Ca(3)(PO(4))(2)], β-tricalcium phosphate [β-Ca(3)(PO(4))(2)], amorphous calcium phosphate [Ca(3)(PO(4))(2)·xH(2)O], octacalcium phosphate [Ca(8)H(2)(PO(4))(6)·H(2)O], brushite (CaHPO(4)·2H(2)O), and hydroxyapatite [Ca(10)(PO(4))(6)(OH)(2)]. The SIMS spectra were obtained via bombardment with (CsI)Cs(+) projectiles. X-ray photoelectron spectroscopy (XPS) core levels of the P 2p, Ca 2p, and O 1s orbitals and the relative O 1s loss intensity were examined. The PO(3)(-)/PO(2)(-) ratios from ToF-SSIMS spectra in conjunction with XPS of the CP powders showed much promise in differentiating between these phases at microscopic CP coverages on the metal oxide surface.  相似文献   

20.
Reaction of Fe(2)(SH)(2)(CO)(6) and HCHO, which gives Fe(2)[(SCH(2))(2)NH](CO)(6) in the presence of NH(3), affords the possible intermediate Fe(2)(SCH(2)OH)(2)(CO)(6), which has been characterized crystallographically as its axial-equatorial isomer. Fe(2)(SCH(2)OH)(2)(CO)(6) was shown to react with ammonia and amines to give Fe(2)[(SCH(2))(2)NR](CO)(6) (R = H, alkyl). Related hemithioacetal intermediates were generated by treatment of Fe(2)(SH)(2)(CO)(6) with RC(O)C(O)R (R = H, Ph, 4-F-C(6)H(4)) to give cycloadducts. The benzil derivative Fe(2)[S(2)C(2)(OH)(2)Ph(2)](CO)(6), a C(2)-symmetric species, was also characterized crystallographically. The acylated azadithiolate Fe(2)[(SCH(2))(2)NAc](CO)(6) was prepared by reaction of Li(2)Fe(2)S(2)(CO)(6) with (ClCH(2))(2)NC(O)Me. DNMR experiments show that the free energies of activation for rotation of the amide bond are the same for Fe(2)[(SCH(2))(2)NAc](CO)(6) and Fe(2)[(SCH(2))(2)NAc](CO)(4)(PMe(3))(2), which implies that the ligands on the iron centers do not strongly affect the basicity of the nitrogen. As a control, we showed that the thioamide Fe(2)[(SCH(2))(2)NC(S)Me](CO)(6) does exhibit a significantly higher barrier to rotation, attributable to the increased double-bond character of the N-C(S) bond.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号