首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为了研究液化天然气分层翻滚的机理,了解液体分层特性对翻滚的影响,采用计算流体动力学方法 (CFD)建立大型LNG储罐内储液分层与翻滚模型,分别研究层数、厚度、层间密度差对翻滚的影响,对储罐中密度差为1kg/m3,分层厚度为2 m的LNG两分层、三分层;分层厚度分别为1、2、3 m,密度差为1 kg/m3的两分层;层间密度差分别为0.5、1、2 kg/m3,分层厚度为2 m的两分层进行模拟研究。结果表明:重力作用下,上重下轻的分层结构不稳定,相邻两层LNG之间的流动与混合造成分层界面的破坏,发生翻滚现象,层间密度趋向一致,翻滚后形成上轻下重的稳定结构;在同等储罐直径、同等密度差下,三分层比两分层的翻滚现象发生得更快、更剧烈,持续时间更长,且分层越多越不稳定;在同等储罐直径、同等密度差下,分层厚度越大翻滚出现得越快、越剧烈,持续时间越长;在同等储罐直径、同等分层厚度下,层间密度差越大翻滚出现得越快、越剧烈,持续时间越长。  相似文献   

2.
LNG储罐在LNG接收站中占据核心地位,由于存在低温、火灾等危险,因而属于重大危险源,一旦发生分层与翻滚事故,后果不堪设想.从LNG储罐设计建造、投产准备、运行检测,LNG船舶接卸以及LNG组分五个方面展开,提出预防LNG储罐储液分层与翻滚的措施:(1) LNG储罐设计建造要严格按照储罐的设计和建造标准来执行,保冷材料...  相似文献   

3.
大型LNG储罐在储存与充装LNG过程中,储罐内LNG因密度差异可能会产生分层和翻滚现象,导致罐内液体短时间内大量蒸发,压力增加,顶部的安全阀释放大量沸腾气体,从而在储罐周围形成爆炸性的LNG蒸气云,遇到点火源引发爆炸,严重威胁LNG储罐及接收站的运行安全。基于FLUENT计算流体软件建立二维数学物理模型,对LNG储罐分层与翻滚的传质传热过程进行模拟,通过研究初始密度差、初始临界密度差和翻滚系数找出LNG储罐分层与翻滚的主要因素。结果表明:LNG初始密度差的存在是导致翻滚发生的主要原因,初始密度差越大,越容易发生翻滚;应选用组分和性质相同或相近的LNG,采用合理的方式进行充装,增强储罐的保温措施以减小漏热;初始临界密度差和翻滚系数可作为储罐翻滚的有效判据。研究成果对于防止储罐翻滚,提前预警并采取有效措施具有一定指导意义。  相似文献   

4.
LNG的分层现象有可能导致翻滚,翻滚现象的产生增加蒸发气的处理难度,如果对密闭空间内压力泄放不及时还有可能造成机械及设备损坏,甚至发生爆炸风险。因此研究大型LNG储罐船舶内分层与翻滚现象产生的机理及预防措施,对船舶及接收站终端接卸具有深远意义。发生翻滚现象的根本原因来自于不同液层的密度不同而引起的局部密度不均而分层。为防止翻滚现象的发生,应选择较为合理的方法避免液体的分层,使LNG充分混合。  相似文献   

5.
一般认为相邻两层LNG间密度差大于0.5 kg/m3、温度差大于0.2℃就会引起LNG翻滚,导致大量LNG快速蒸发,罐内压力急剧升高影响存储安全,不仅浪费资源且造成极大安全隐患。在罐内LNG液体已经形成分层且可引发翻滚的基础上,利用Fluent软件建立罐内LNG翻滚过程中气相空间数值计算模型。得出主要结论如下:(1)储罐内LNG分层后翻滚过程可以分为四个过程:界面扰动阶段、扰动发展阶段、剧烈翻滚增压阶段和平稳恢复阶段;(2)储罐内LNG发生翻滚时,罐内LNG迅速蒸发,罐内压力急剧上升至储罐最大工作压力时,安全泄放阀打开泄放气体以防止罐内超压;(3)研究表明16万m3储罐充满率为70%、上层重质LNG厚度为1 m、LNG分层间密度差为1 kg/m3时,翻滚发生时的平均蒸发速率是静态蒸发速率的32.3倍,安全泄放阀在翻滚发生约16 h后打开泄压。  相似文献   

6.
大型储罐内LNG翻滚机理和预防措施   总被引:4,自引:2,他引:2  
对于连续生产运营的LNG接收站,LNG储罐一般不会完全倒空储存LNG。由于不同产地、不同批次的LNG密度不同,在充装密度、温度都不同的新LNG一段时间后,LNG在储罐内将产生分层,时间较长时容易产生翻滚,从而对LNG储罐的安全造成极大的威胁,也会增加处理翻滚产生的蒸发气的费用。分析了储罐内LNG液体翻滚的机理及其危害,研究了消除LNG分层、预防翻滚的对策。结论指出:利用储罐设计时提供的顶部卸料管和底部卸料管,在储罐投入运营后,当接卸的LNG密度与储罐内的LNG密度不同时,采用合理的卸料方式,不同密度的LNG将自动混合,不会产生明显的分层,进而极大地降低了翻滚发生的概率。  相似文献   

7.
随着我国LNG进口量的不断增加,同一个LNG接收站接卸不同气质LNG资源的可能性逐步增大,尤其是LNG现货资源存在产地不同、组分不同、密度差异大的问题。目前LNG接收站普遍建设有2~4个16×104~20×104m3LNG储罐,无法实现多种LNG资源的分卸、分储,因此不可避免地需要在同一储罐进行不同气质LNG接卸和储存。当两种气质密度存在较大差异时,若不采取合理的接卸和储存方式,则会造成LNG分层,严重时产生翻滚,引发安全事故。通过研究LNG储罐贫液(密度低)和富液(密度高)混合的储存方式,结合国内已运行的某LNG接收站贫富液接卸和储存情况,采用数值模拟方式,动态研究了贫富液在混装过程中的分层情况,并给出混装的操作建议,对LNG接收站实现贫富液混装和安全平稳生产具有重要意义。  相似文献   

8.
张成伟  吕国锋  庄芳 《石油工程建设》2011,37(6):66-68,91,92
LNG储罐中液化气翻滚会导致储罐损坏和发生液化气泄漏事故。文章介绍了LNG储罐中液化气翻滚产生的原因、危害及其影响因素,提出了储罐设计中应考虑的LNG分层的处理方案,实际生产运行中发生分层时应采取的措施等。  相似文献   

9.
全容式LNG储罐绝热性能及保冷系统研究   总被引:1,自引:0,他引:1  
彭明  丁乙 《天然气工业》2012,32(3):94-97
我国大型LNG接收站中的储罐均为全容式LNG储罐,其通常处于低温微正压状态,外界热量的漏入会引起LNG的蒸发,增加能耗,也可能会使储罐产生分层及翻滚现象,对其安全造成较大威胁,因此,需要对它的绝热性能及保冷系统进行研究。为此,根据全容式LNG储罐的结构特点,分别对罐顶、罐壁和罐底进行了漏热量计算,结合实例进行了LNG储罐总漏热量及日蒸发率的计算分析,探讨了LNG储罐的绝热性能,找到了影响储罐漏热量的主要因素:保冷材料的导热系数、保冷层的厚度、储罐表面的吸收率、环境温度等,为LNG储罐保冷系统的设计提供了相关依据;并根据LNG储罐保冷系统的需要,归纳总结了保冷材料的选择原则、施工方法及其注意事项。  相似文献   

10.
主要介绍了液化天然气(LNG)在储存过程中发生翻滚现象的原因和机理,并阐述了翻滚现象造成的危害。相关文献分析表明,储罐的进料操作方式、LNG放置时间(长短)、储罐漏热及LNG自身组成等是造成LNG在罐内发生分层的主要因素,而分层现象又是导致LNG发生罐内翻滚的根本原因。同时也提出了预防翻滚现象产生的措施,包括选择合适的进料位置、罐内循环、仪表监测及气体再液化等。  相似文献   

11.
大型LNG储罐内压力及蒸发率的影响因素分析   总被引:2,自引:2,他引:0  
LNG在储罐内的蒸发对LNG储罐的安全有着非常大的影响。为此,以3×104m3的LNG储罐为例,在分析研究的基础上,基于质量守恒及能量守恒原理,建立了预测LNG储罐内压力及蒸发率的模拟模型,经试验验证该模型的计算结果较为准确可靠。利用该模型分析了密闭LNG储罐内压力及蒸发率的影响因素。结果发现:密闭LNG储罐存在1个"最优直径"和"最优充满率";LNG储罐保温层导热系数越大,LNG储罐内压力上升得越快,LNG安全储存时间就越短;环境温度越高,密闭LNG储罐的压力上升得越快,LNG安全储存时间越短;LNG含氮量、外界大气压对LNG储罐内的压力影响不大;LNG含氮量越高其的蒸发率越低,向LNG储罐内充注氮气可以有效地降低LNG储罐内液体的蒸发率。该项成果将为LNG储罐的设计及运行提供技术支持。  相似文献   

12.
现有文献关于液化天然气(LNG)储罐内填充多孔材料的研究相对较少。为此,通过Fluent 6.3建立了多孔介质中湍流流动的二维模型,多孔材料采取边界层填充以及不同的填充厚度,对储罐内液化天然气的流动情况进行数值模拟,并与无多孔材料填充时液化天然气流动情况进行对比。研究结果表明:在储罐边界层内填充多孔材料可使罐体两边的流动强度较弱,中间的流动强度较强,两侧滚动圈的滞留区面积比中间滚动圈大,同时可减弱流动强度,延迟压力出口有质量流出的时间,减少液体蒸发量,减少下层液体积聚的能量,因此可在一定程度上抑制翻滚的发生。研究结果可为储罐内填充多孔材料抑制LNG翻滚事故的发生提供理论指导。  相似文献   

13.
大型LNG储罐通常采用吊顶结构,为了平衡吊顶上下气相空间的压力,需在吊顶上设置通气孔。从理论上阐明了影响LNG储罐通气孔尺寸选取的开车阶段氮气干燥和置换、翻滚等超压工况和欠压工况,提供了利用HYSYS中的PIPE模型来计算流体流经通气孔时的阻力损失的方法,以及LNG接收站和液化厂LNG储罐吊顶通气孔的尺寸选取方法。  相似文献   

14.
根据当前LNG加气站普遍存在储罐计量不准确、损耗数据不真实的情况,分析了影响LNG加气站储罐计量数据准确性主要因素,提出了对储罐容积表进行低温修正、防止储罐介质分层翻滚、提高液位计准确率等的应对措施,并推荐了计算储罐中LNG密度值的计算方法,且通过数据对比验证了该方法的准确性,能在一定程度上提高计量准确性,对厘清损耗真实数据具有较好帮助。  相似文献   

15.
介绍了大型LNG全容储罐内罐壁高的设计原理;为应对长周期地震动作用激发储液产生的大幅晃动,分析了多个规范中的地震反应谱在内罐壁高设计中的适用性,从而选择了规范EN 1998-1:2004和GB/T 50761-2018中的水平设计反应谱;并以某20×104 m3大型LNG储罐为例,通过理论计算与数值模拟进行了水平设计反...  相似文献   

16.
充液大型储罐自振特性分析   总被引:1,自引:0,他引:1  
结构的自振特性分析是大型储罐地震响应分析的重要组成部分,为给大型储罐的地震动力响应进一步分析提供依据,利用ANSYS软件建立了100dam3的大型储罐装有不同原油量时的有限元模型,考虑了液罐耦合作用,对罐内原油的晃动特性和液罐系统耦合自振特性进行计算。分析表明罐内原油高度对液罐系统的振动频率有影响,液罐系统本身的某些高阶振频率受到激发而产生共振效应,是矮胖型大型储罐罐壁底部在地震中遭破坏的一个重要原因。  相似文献   

17.
大型LNG储罐外罐在混凝土浇筑过程中,水泥水化热会导致外罐产生较大的温度应力,从而引起混凝土开裂,将严重影响储罐的耐久性。为此,以山东某大型LNG储罐混凝土外罐为研究对象,采用ADINA有限元软件建立了精细化的LNG储罐有限元模型,按照实际的施工顺序与时间,模拟了LNG储罐外罐混凝土分层浇筑过程中的早期温度场分布;在考虑混凝土龄期效应的基础上,将外罐的温度场和结构场进行耦合,分析了外罐的温度应力及裂缝分布情况,评估了外罐混凝土开裂的风险。结果表明:1外罐在施工期间将产生较大的内外温差,引起较大的温度应力;2第1浇筑层的温度应力明显大于其他浇筑层,且第一主应力为环向应力,将使此处混凝土产生沿竖向开展的裂缝;3因为约束作用减弱,其他浇筑层混凝土产生温度裂缝的可能性很小。该研究成果为LNG储罐外罐温度裂缝控制提供了参考。  相似文献   

18.
LNG在储罐内长时间存储过程中,受外部热源的侵扰会发生蒸发,罐内压力升高,安全存储时间缩短并可能导致其分层翻滚,乃至LNG大量急剧蒸发,不仅浪费资源且造成安全隐患。建立密闭LNG储罐内静态蒸发模型,对初始充满率、储罐容积、环境温度、罐壁导热系数、LNG含氮量等影响因素进行研究,结论如下:其一,在同一初始充满率下,在储罐最大工作压力范围内,罐内压力随安全存储时间呈正比例关系增长。其二,在储罐最大工作压力范围内存在最优充满率,在最优充满率时储罐有最大的安全存储时间;当初始充满率小于最优充满率时,安全存储时间随初始充满率的减小而减小;当初始充满率大于最优充满率时,安全存储时间随初始充满率的增大而减小。其三,储罐的尺寸越小,储罐所具有的最大承压能力越大,最优充满率越大,安全存储时间越长。其四,外界环境温度越高以及罐壁导热系数越大,罐内压力随时间增长率越大,储罐的安全存储时间越短。其五,LNG组分中含氮量越高,罐内压力随时间增长率越大,储罐的安全存储时间越短。  相似文献   

19.
建立大型LNG储罐预冷模型,采用FLUENT软件对储罐低温气体预冷过程进行数值模拟,研究了储罐冷却过程中物理场的变化规律以及低温气体入口流量。结果表明:(1)大型LNG储罐预冷时,罐内气体温度最先降低,罐底比罐顶、罐壁最先冷却;(2)根据规范中对储罐预冷温降速率的要求调控低温气体的流量,提出五阶段LNG储罐逐步冷却方法,得到了不同阶段低温气体的入口流量。  相似文献   

20.
随着LNG(液化天然气)项目的大规模建设,LNG储罐逐渐朝着大型化的方向发展。作为LNG液化厂和接收站的关键和核心设备,介绍了大型LNG储罐在设计和建造方面的特殊要求。论述了国际上常用的大型LNG储罐的结构形式和特点;大型LNG储罐各种结构形式在投资、建设周期、安全性等方面的优缺点;大型LNG储罐材料选择与制造要求;储罐的安全性设计要求。在此基础上,提出了大型LNG储罐在设计和建造过程中应重点注意的关键问题,对大型LNG储罐的国产化潜力进行了分析,并提出了今后的公关方向。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号