首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The tetrahedral tip is introduced as a new type of a probe for scanning near-field optical microscopy (SNOM). Probe fabrication, its integration into a scheme of an inverted photon scanning tunnelling microscope and imaging at 30 nm resolution are shown. A purely optical signal is used for feedback control of the distance of the scanning tip to the sample, thus avoiding a convolution of the SNOM image with other simultaneous imaging modes such as force microscopy. The advantages of this probe seem to be a very high efficiency and its potential for SNOM at high lateral resolution below 30 nm.  相似文献   

2.
3.
4.
Energy-filtering TEM (EFTEM) has turned out to be a very efficient and rapid tool for the chemical characterization of a specimen on a nanometer and even subnanometer length scale. Especially, the detection and measurement of very thin layers has become a great application of this technique in many materials science fields, e.g. semiconductors and hard disk technology. There, the reliability of compositional profiles is an important issue. However, the experimentally obtainable spatial resolution strongly influences the appearance of a thin layer in an EFTEM image, when dimensions reach subnanometer levels, which mainly leads to a broadening of the layer in the image. This fact has to be taken into account, when measuring the thickness of such a thin layer. Additionally, the convolution decreases contrast which makes the layer less visible in the image and finally determines the detection limit.In this work we present a systematic study on specifically designed Mn/PdMn multilayer test specimens to explore the practical aspects of spatial resolution and detection limits in EFTEM. Although specific to the ionization edges used, we will present general conclusions about the practical limitations in terms of EFTEM spatial resolution. Additionally, work will be shown about low energy-loss imaging of thin oxide layers, where delocalization is the main factor responsible for broadening.  相似文献   

5.
In a perfect optical system numerical aperture and wavelength determine resolution. In a real optical system, however, the number of photons collected from a specimen determines the contrast and this limits the resolution. Contrast is affected by the number of picture elements per unit area, the number of photons and the aberrations present in every optical system. The concept of contrast vs. distance functions is used to compare the resolution achievable in confocal and wide-field fluorescence microscopes and the effect of a further reduction of the observable volume. In conclusio: (a) real optical systems will never be able to achieve the theoretical resolution, (b) wide-field fluorescence microscopy will often provide a better resolution than confocal fluorescence microscopy, (c) decreasing the observed volume does not necessarily increase the resolution and (d) using multiple fluorophores can improve the accuracy with which distances are measured. Some numbers for typical situations are provided.  相似文献   

6.
Robotic, high‐throughput microscopy is a powerful tool for small molecule screening and classifying cell phenotype, proteomic and genomic data. An important hurdle in the field is the automated classification and visualization of results collected from a data set of tens of thousands of images. We present a method that approaches these problems from the perspective of flow cytometry with supporting open‐source code. Image analysis software was created that allowed high‐throughput microscopy data to be analysed in a similar manner as flow cytometry. Each cell on an image is considered an object and a series of gates similar to flow cytometry is used to classify and quantify the properties of cells including size and level of fluorescent intensity. This method is released with open‐source software and code that demonstrates the method's implementation. Accuracy of the software was determined by measuring the levels of apoptosis in a primary murine myoblast cell line after exposure to staurosporine and comparing these results to flow cytometry.  相似文献   

7.
Scanning luminescence X-ray microscopy is based on the use of the very small focused probe of a scanning X-ray microscope to stimulate visible light emission from phosphors and dyes. Using an undulator X-ray source and a Fresnel zone plate to produce a focused X-ray probe, images of P31 phosphor grains with a resolution of 50–75 nm have been obtained, and luminescence from polystyrene spheres loaded with 50–100 μmol/g of fluorescent dye has been imaged. The resolution was not limited by the focused X-ray probe (the microscope has imaged features at 36-nm spacing in transmission mode) but by dark noise and the low net efficiency of the luminescence detection system used for this investigation. This technique may make it possible to image dye-tagged sites of biochemical activity at the resolution of the X-ray microscope in wet, unsectioned, and unfixed cells, especially with soft X-ray optimized dyes. Because the image is formed from the detection of signal against a dark background, calculations suggest that the radiation dose for luminescence imaging of dye-tagged features should be 2–22 times lower than it is in transmission X-ray microscopy. A possible extension of the technique for three-dimensional imaging at the transverse resolution of the X-ray microscope is described, where visible light collection optics might be used to obtain submicrometre axial resolution.  相似文献   

8.
Recently developed scanning electron microscopes provide sufficient resolution to allow useful observation of subcellular biological objects. Preparation methods for such objects need not be limited to the traditional coating and mounting procedures. Many methods developed for transmission electron microscopy are immediately adaptable to scanning electron microscopy. We show that a number of techniques are available to the microscopist which yield adequate contrast and high resolution. As examples we show skeletal muscle myofibrils dispersed to reveal thick filaments, uncoated on a thin carbon film; a tropomyosin tactoid, negatively stained with uranyl acetate; oncornavirus, conventionally coated; and T4 bacteriophage on an aluminium substrate.  相似文献   

9.
A real-time method for optimizing the defocus of a conventional transmission electron microscope in the phase contrast imaging mode has been investigated using image histogram data. This method can also be used to minimize the objective lens astigmatism. It will be shown both theoretically and empirically, using a digital television frame store, that a histogram will give the largest peak when an image has a broad and flat contrast transfer function. This method has distinct advantages of speed and minimal computational requirements over obtaining the power spectrum of an image.  相似文献   

10.
In this study we have modified the BioPhotonics workstation (BWS), which allows for using long working distance objective for optical trapping, to include traditional epi-fluorescence microscopy, using the trapping objectives. We have also added temperature regulation of sample stage, allowing for fast temperature variations while trapping. Using this modified BWS setup, we investigated the internal pH (pH(i)) response and membrane integrity of an optically trapped Saccharomyces cerevisiae cell at 5 mW subject to increasing temperatures. The pH(i) of the cell is obtained from the emission of 5-(and-6)-carboxyfluorescein diacetate, succinimidyl ester, at 435 and 485 nm wavelengths, while the permeability is indicated by the fluorescence of propidium iodide. We present images mapping the pH(i) and permeability of the cell at different temperatures and with enough spatial resolution to localize these attributes within the cell. The combined capability of optical trapping, fluorescence microscopy and temperature regulation offers a versatile tool for biological research.  相似文献   

11.
By coherently adding the spherical wavefronts of two opposing lenses, two-photon excitation 4Pi-confocal fluorescence microscopy has achieved three-dimensional imaging with an axial resolution 3-7 times better than confocal microscopy. So far this improvement was possible only in glycerol-mounted, fixed cells. Here we report 4Pi-confocal microscopy of watery objects and its application to the imaging of live cells. Water immersion of 4Pi-confocal microscopy of membrane stained live Escherichia coli bacteria attains a 4.3-fold better axial resolution as compared to the best water immersion confocal microscope. The resolution enhancement results into a vastly improved three-dimensional representation of the bacteria. The first images of live biological samples with an all-directional resolution in the 190-280 nm range are presented here, thus establishing a new resolution benchmark in live-cell microscopy.  相似文献   

12.
A combined optical and atomic force microscope for live cell investigations   总被引:6,自引:0,他引:6  
We present an easy-to-use combination of an atomic force microscope (AFM) and an epi-fluorescence microscope, which allows live cell imaging under physiological conditions. High-resolution AFM images were acquired while simultaneously monitoring either the fluorescence image of labeled membrane components, or a high-contrast optical image (DIC, differential interference contrast). By applying two complementary techniques at the same time, additional information and correlations between structure and function of living organisms were obtained. The synergy effects between fluorescence imaging and AFM were further demonstrated by probing fluorescence-labeled receptor clusters in the cell membrane via force spectroscopy using antibody-functionalized tips. The binding probability on receptor-containing areas identified with fluorescence microscopy ("receptor-positive sites") was significantly higher than that on sites lacking receptors.  相似文献   

13.
Focus maintenance is a challenging problem in multidimensional wide‐field microscopy. Most automated microscopes use software algorithms, which are applied to z‐sections of the object, to select for the plane with the best signal to noise ratio. When applied automatically in multidimensional imaging applications, autofocus routines significantly increase light exposure and can become cytotoxic if applied too frequently. In addition, automated focusing procedures can readily focus on unwanted high contrast objects. By labelling a defined position with a fluorescent marker, we were able to separate the focusing procedure from the actual image acquisition positions and therefore overcome some of the major drawbacks of routine autofocus procedures. To implement this method in a multidimensional acquisition experiment, we created a visual basic‐based program, which is run prior to each image acquisition. This technique allows tight control of focus whilst keeping light toxicity in live cell imaging experiments to a minimum.  相似文献   

14.
Shiku H  Dunn RC 《Journal of microscopy》1999,194(PT 2-3):461-466
The phase structure in L-alpha-dipalmitoylphosphatidylcholine-20 mol% fluorescent 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate Langmuir monolayers dispersed on a 2 M sucrose solution subphase is studied with near-field scanning optical microscopy (NSOM). Cantilevered NSOM probes operating in a tapping-mode feedback or an optical interferometric feedback mode are capable of tracking the air-sucrose solution interface. At the micrometre scale, the NSOM fluorescence images reveal lipid domain features similar to those observed previously in supported Langmuir-Blodgett (LB) monolayers. At the submicrometre scale, the small nanometric lipid islands seen in LB films are not observed at the air-sucrose interface. This supports a mechanism in which domain formation in LB films can be induced by means of the transfer process onto the solid support. Progress towards extending these studies to films at the air-water interface using the optical interferometric feedback method is also discussed.  相似文献   

15.
High-resolution atomic force microscopy (AFM) studies have been performed to analyze the molecularity of growth steps of the (1 1 0) face of tetragonal lysozyme crystals. Besides a major population of step heights of about 5.5 nm also step heights of about half this size were observed. The latter steps always appeared pairwise. Both surfaces the 1 1 0) face and the (1 0 1) face could be imaged at molecular level. Comparison of the height pattern of the corresponding surface structure indicates that the (1 1 0) face is relatively smooth of less than 0.2 nm compared to the (1 0 1) face of about 1.5 nm. AFM linescan images of the (1 0 1) face indicate the insertion of lysozyme aggregates in solution to the crystal surface rather than lysozyme monomers. This study suggests that insertion of lysozyme aggregates in the solution yields growth steps of the (1 1 0) face of monomolecular as well as of bimolecular unit height.  相似文献   

16.
17.
The introduction of 1 micron-thick sections from plastic embedded material represents a great technical improvement for the study of tissues under the optical microscope. However, even sections of this thickness appear too thick when observed with oil immersion objectives of high numerical aperture. The extremely shallow depth of field of these lenses allows them to differentiate several focal planes within a one micron thick section. This in turn results in ghost images being formed from out of focus structures, a problem particularly vexing when photomicrography is attempted. To circumvent this difficulty, we reduced the thickness of the sections down to an optimum of 0.4 micron. These thinner sections do require a very energetic stain to give enough contrast to the cellular structures; Stevenel Blue, a stain recently adapted for plastic sections [del Cerro et al., Microsc. Acta 83, (2), 117--121 (1980)] proved to be the most suitable for this purpose of several stains tested. In summary, submicrometer thick sections stained with Stevenel Blue allow to reach the limits of visibility permitted by the best available objectives and effectively merge the realm of optical microscopy with that of low power electron microscopy.  相似文献   

18.
Atomic force microscopy, in a liquid environment, was used to capture in vitro the morphological and mechanical changes that cultured fibroblasts undergo as time elapses from the completion of the cell culture. Topography images illustrated that initially, the nucleus had a height of 1.18 ± 0.2 μm, and after 48 h it had decreased to 550 ± 60 nm; similarly, the cell membrane exhibited significant shrinkage from 34 ± 4 to 23 ± 2 μm. After each image scan, atomic force microscopy indentation was performed on the centre of the nucleus, to measure the changes in the cell elasticity. Examination of the force‐distance curves indicated that the membrane elastic modulus at the nucleus remained the same within the time frame of 48 h, even though the cell morphology had significantly changed.  相似文献   

19.
20.
A computer model based on the elastic properties of rubber is introduced for the evaluation of the lateral resolution in atomic force microscopy of deformable specimens. The computational results show that, if the full width at half-height can be defined as the lateral resolution, it is continuously improved at greater probe forces, at the expense of a reduced molecular height. In fact, even for a probe that is bigger than the molecule, the real size of the molecule can be 'recovered' at about 25% compression. This result demonstrates that for a better lateral resolution, a greater probe force can be beneficial, provided that the molecule is not moved or damaged and the response remains elastic. Measurements on isolated low-density lipoproteins (LDL) show that with 26% vertical compression, the lateral size measured in atomic force microscopy is only about 72% of the value predicted by a simple convolution, and is only slightly larger (≈ 13%) than the known size of LDL. Therefore, the results on LDL provide a direct support for the conclusions of the computational model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号