首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Dewatering model for optimal operation of sludge treatment wetlands   总被引:1,自引:0,他引:1  
Sludge treatment wetlands (STW) are used as a dewatering technology in some European countries since the 80’s. Although the efficiency of this technology in terms of sludge dewatering and mineralisation is well known, design and operation parameters are yet to be standardised. The aim of this study is to develop a mathematical model capable of predicting the water loss with time, in order to optimise the feeding frequency enhancing sludge dewatering and expanding the lifespan of the system. The proposed model is validated with experimental data from one pilot and two full-scale STW. The scenarios considered indicate that the optimum feeding frequency decreases with the sludge layer height. In this way, systems with a sludge layer of 20 cm, 40 cm and 80 cm (corresponding to 2, 4 and 8 years of operation), should be fed every 2.5, 10 and 30-40 days, respectively. On the other hand, evapotranspiration (ET) has no effect on the feeding frequency, although it does increase the sludge dryness from 25% to 45% (for ET of 2.5 and 14.5 mm/d in the case of 20 cm of sludge height). According to the model output, the sludge loading rate is determined as a function of evapotranspiration, feeding frequency and sludge height.  相似文献   

2.
Sludge treatment wetlands (STW) emerge as a promising sustainable technology with low energy requirements and operational costs. In this study, technical, economic and environmental aspects of STW are investigated and compared with other alternatives for sludge management in small communities (<2000 population equivalent). The performance of full-scale STW was characterised during 2 years. Sludge dewatering increased total solids (TS) concentration by 25%, while sludge biodegradation lead to volatile solids around 45% TS and DRI24h between 1.1 and 1.4 gO2/kgTS h, suggesting a partial stabilisation of biosolids. In the economic and environmental assessment, four scenarios were considered for comparison: 1) STW with direct land application of biosolids, 2) STW with compost post-treatment, 3) centrifuge with compost post-treatment and 4) sludge transport to an intensive wastewater treatment plant. According to the results, STW with direct land application is the most cost-effective scenario, which is also characterised by the lowest environmental impact. The life cycle assessment highlights that global warming is a significant impact category in all scenarios, which is attributed to fossil fuel and electricity consumption; while greenhouse gas emissions from STW are insignificant. As a conclusion, STW are the most appropriate alternative for decentralised sludge management in small communities.  相似文献   

3.
Life cycle assessment (LCA) is used to compare the environmental impacts of vertical flow constructed wetlands (VFCW) and horizontal flow constructed wetlands (HFCW). The LCAs include greenhouse gas (N2O, CO2 and CH4) emissions. Baseline constructed wetland designs are compared to different treatment performance scenarios and to conventional wastewater treatment at the materials acquisition, assembly and operation life stages. The LCAs suggest that constructed wetlands have less environmental impact, in terms of resource consumption and greenhouse gas emissions. The VFCW is a less impactful configuration for removing total nitrogen from domestic wastewater. Both wetland designs have negligible impacts on respiratory organics, radiation and ozone. Gaseous emissions, often not included in wastewater LCAs because of lack of data or lack of agreement on impacts, have the largest impact on climate change. Nitrous oxide accounts for the increase in impact on respiratory inorganic, and the combined acidification/eutrophication category. The LCAs were used to assess the importance of nitrogen removal and recycling, and the potential for optimizing nitrogen removal in constructed wetlands.  相似文献   

4.
Climate change due to greenhouse gas emissions has been at the forefront of current research efforts in the past decade. The aim of these efforts was defined at the earth summit in Rio de Janeiro as achieving “stabilization of greenhouse gas concentrations in the atmosphere at a level that would prevent dangerous anthropogenic interference with the climatic system”. With on‐going demographic and economic growth, stabilization of greenhouse gas emissions requires firm commitment from all countries to mitigate their emission increase often at the expense of economic growth. However, the economic and social costs of mitigating climate change are, for most countries, less than the costs of adverse impacts associated with the predicted change in climate patterns. This paper evaluates the current and future contribution of Lebanon to global greenhouse gas emissions. Mitigation options with positive or minor economic impacts are investigated. Attainable levels of emission reduction are first estimated. An economic valuation of mitigation measures associated with these levels is then performed. Reasonable emission reductions at negative costs are found to be feasible due to existing inefficiencies in the energy and industry sectors.  相似文献   

5.
The main objective of this paper is to demonstrate how greenhouse gas (GHG) emissions can be quantified during the evaluation of control strategies in wastewater treatment plants (WWTP). A modified version of the IWA Benchmark Simulation Model No 2 (BSM2G) is hereby used as a simulation case study. Thus, the traditional effluent quality index (EQI), operational cost index (OCI) and time in violation (TIV) used to evaluate control strategies in WWTP are complemented with a new dimension dealing with GHG emissions. The proposed approach is based on a set of comprehensive models that estimate all potential on-site and off-site sources of GHG emissions. The case study investigates the overall performance of several control strategies and demonstrates that substantial reductions in effluent pollution, operating costs and GHG emissions can be achieved when automatic control is implemented. Furthermore, the study is complemented with a scenario analysis that examines the role of i) the dissolved oxygen (DO) set-point, ii) the sludge retention time (SRT) and iii) the organic carbon/nitrogen ratio (COD/N) as promoters of GHG emissions. The results of this study show the potential mechanisms that promote the formation of CO2, CH4 and N2O when different operational strategies are implemented, the existing synergies and trade-offs amongst the EQI, the OCI and TIV criteria and finally the need to reach a compromise solution to achieve an optimal plant performance.  相似文献   

6.
《Soils and Foundations》2023,63(2):101279
An extensive field investigation was conducted to determine emissions of 80 individual landfill gas species from 3 cover categories (daily, intermediate, and final) at 5 California (USA) landfills over 2 main seasons (wet and dry). The gases included 15 principal anthropogenic greenhouse gases (methane, nitrous oxide, and 13 F-gas species) and 65 non-methane volatile organic compounds (NMVOCs). Emissions were measured using the static flux chamber method. In addition, field and laboratory tests were conducted to determine geotechnical index properties of the covers. Results are presented for flux and baseline emissions as well as for direct and indirect climate forcing emissions (CO2-eq.) of the chemicals. Positive flux of a given chemical at a given landfill varied by up to 8 orders of magnitude and similarly, between landfills by up to 8 orders of magnitude. Direct emissions varied from 480 to 38,000 Mg CO2-eq./yr, where emissions per m3 waste in place ranged from 0.0004 to 0.013 Mg CO2-eq./m3-yr and per ha of landfill area ranged from 4.8 to 1320 Mg CO2-eq./ha-yr. Flux and emissions decreased as the cover soils varied from coarser to finer materials, clay content of cover soils increased, and with increasing composite parameters representing combined void ratio and cover thickness, total cover solids, and combined gas-phase tortuosity and thickness. These parameters and the associated numerical thresholds identified in this paper can be used to inform improved engineering design, construction, and operations of landfill covers to mitigate gas emissions and limit climate change effects from landfills.  相似文献   

7.
Riparian wetlands bordering intensively managed agricultural fields can act as biological filters that retain and transform agrochemicals such as nitrate and pesticides. Nitrate removal in wetlands has usually been attributed to denitrification processes which in turn imply the production of greenhouse gases (CO2 and N2O). Denitrification processes were studied in the Salburua wetland (northern Spain) by using undisturbed soil columns which were subsequently divided into three sections corresponding to A-, Bg- and B2g-soil horizons. Soil horizons were subjected to leaching with a 200 mg NO3 L− 1 solution (rate: 90 mL day− 1) for 125 days at two different temperatures (10 and 20 °C), using a new experimental design for leaching assays which enabled not only to evaluate leachate composition but also to measure gas emissions during the leaching process. Column leachate samples were analyzed for NO3 concentration, NH4+ concentration, and dissolved organic carbon. Emissions of greenhouse gases (CO2 and N2O) were determined in the undisturbed soil columns. The A horizon at 20 °C showed the highest rates of NO3 removal (1.56 mg N-NO3 kg−1 DW soil day− 1) and CO2 and N2O production (5.89 mg CO2 kg−1 DW soil day− 1 and 55.71 μg N-N2O kg−1 DW soil day− 1). For the Salburua wetland riparian soil, we estimated a potential nitrate removal capacity of 1012 kg N-NO3 ha− 1 year− 1, and potential greenhouse gas emissions of 5620 kg CO2 ha− 1 year− 1 and 240 kg N-N2O ha− 1 year− 1.  相似文献   

8.
Greenhouse gas (GHG) emissions generated from municipal wastewater treatment plants in India is estimated in this study. The emissions from the wastewater treatment process as well as from the electricity used during the treatment process are estimated by using the methodology of Intergovernmental Panel on Climate Change. The present treatment plants of capacity 15 997 million litres per day (MLD) contributes towards GHG emissions of 7.3 Mt of CO2‐eq/year. The future GHG emissions would depend upon the treatment technology used for treating 34 109 MLD of untreated wastewater. The highest GHG emissions would occur if all new wastewater treatment plants are based on upflow anaerobic sludge blanket technology, 19.66 Mt CO2‐eq/year and lowest if sequential batch reactor technology is adopted, 2.93 MtCO2‐eq/year.  相似文献   

9.
The feasibility of halving greenhouse gas emissions from hotels by 2030 has been studied as part of the Carbon Vision Buildings Programme. The aim of that programme was to study ways of reducing emissions from the existing stock because it will be responsible for the majority of building emissions over the next few decades. The work was carried out using detailed computer simulation using the ESP-r tool. Two hotels were studied, one older and converted and the other newer and purpose-built, with the aim of representing the most common UK hotel types.  相似文献   

10.
This study discusses the results of the continuous monitoring of nitrous oxide emissions from the oxidation tank of a pilot conventional wastewater treatment plant. Nitrous oxide emissions from biological processes for nitrogen removal in wastewater treatment plants have drawn great attention over the last years, due to the high greenhouse effect. However, even if several studies have been carried out to quantify nitrous oxide emission rates from different types of treatment, quite wide ranges have been reported. Only grab samples or continuous measurements over limited periods were considered in previous studies, which can account for the wide variability of the obtained results. Through continuous monitoring over several months, our work tries to fill this gap of knowledge and get a deeper insight into nitrous oxide daily and weekly emission dynamics. Moreover, the influence of some operating conditions (sludge age, dissolved oxygen concentration in the oxidation tank, nitrogen load) was studied to determine good practices for wastewater treatment plant operation aiming at the reduction of nitrous oxide emissions. The dissolved oxygen set-point is shown to play a major role in nitrous oxide emissions. Low sludge ages and high nitrogen loads are responsible for higher emissions as well. An interesting pattern has been observed, with quite negligible emissions during most of the day and a peak with a bell-like shape in the morning in the hours of maximum nitrogen load in the plant, correlated to the ammonia and nitrite peaks in the tank.  相似文献   

11.
Cakir FY  Stenstrom MK 《Water research》2005,39(17):4197-4203
Anaerobic wastewater treatment offers improved energy conservation with potential reduction in greenhouse gas emissions. Pitfalls exist in that the methane produced in anaerobic treatment can offset any reductions in carbon dioxide emissions, if it is released to the environment. This paper analyzes greenhouse gas emissions from both aerobic and anaerobic treatment systems, including sludge digestion and the losses of dissolved methane in digested biosolids and process effluents. There exists cross over points, ranging from 300 to 700 mg/L influent wastewater BODu, which are functions of the efficiency of the aerobic treatment system. Anaerobic treatment becomes favorable when treating influents higher in concentrations than the cross over values. A technology to recover dissolved methane would make anaerobic treatment favorable at nearly all influent strengths.  相似文献   

12.
The atmospheric fluxes of N2O, CH4 and CO2 from the soil in four mangrove swamps in Shenzhen and Hong Kong, South China were investigated in the summer of 2008. The fluxes ranged from 0.14 to 23.83 μmol m2 h1, 11.9 to 5168.6 μmol m2 h1 and 0.69 to 20.56 mmol m2 h1 for N2O, CH4 and CO2, respectively. Futian mangrove swamp in Shenzhen had the highest greenhouse gas fluxes, followed by Mai Po mangrove in Hong Kong. Sha Kong Tsuen and Yung Shue O mangroves in Hong Kong had similar, low fluxes. The differences in both N2O and CH4 fluxes among different tidal positions, the landward, seaward and bare mudflat, in each swamp were insignificant. The N2O and CO2 fluxes were positively correlated with the soil organic carbon, total nitrogen, total phosphate, total iron and NH4+-N contents, as well as the soil porosity. However, only soil NH4+-N concentration had significant effects on CH4 fluxes.  相似文献   

13.
Thickened wastewater activated sludge was treated in 13 pilot-scale sludge treatment wetlands of various configurations that operated continuously for three years in North Greece. Sludge was loaded for approximately 2.5 years, and the beds were left to rest for the remaining period. Three different sludge loading rates were used that represented three different population equivalents. Residual sludge stability and maturity were monitored for the last year. Sludge was regularly sampled and microbial respiration activity indices were measured via a static respiration assay. The phytotoxicity of sludge was quantified via a seed germination bioassay. Measurements of total solids, organic matter, total coliforms, pH and electrical conductivity were also made. According to microbial respiration activity measurements, the sludge end-product was classified as stable. The germination index of the final product exceeded 100% in most wetland units, while final pH values were approximately 6.5. The presence of plants positively affected the stability and maturity of the residual sludge end-product. Passive aeration did not significantly affect the quality of the residual sludge, while the addition of chromium at high concentrations hindered the sludge decomposition process. Conclusively, sludge treatment wetlands can be successfully used, not only to dewater, but also to stabilize and mature wastewater sludge after approximately a four-month resting phase.  相似文献   

14.
M.D. Butler  Y.Y. Wang 《Water research》2009,43(5):1265-1697
Experiments were carried out to establish whether nitrous oxide (N2O) could be used as a non-invasive early warning indicator for nitrification failure. Eight experiments were undertaken; duplicate shocks DO depletion, influent ammonia increases, allylthiourea (ATU) shocks and sodium azide (NaN3) shocks were conducted on a pilot-scale activated sludge plant which consisted of a 315 L completely mixed aeration tank and 100 L clarifier. The process performed well during pre-shock stable operation; ammonia removals were up to 97.8% and N2O emissions were of low variability (<0.5 ppm). However, toxic shock loads produced an N2O response of a rise in off-gas concentrations ranging from 16.5 to 186.3 ppm, followed by a lag-time ranging from 3 to 5 h ((0.43-0.71) × HRT) of increased NH3-N and/or NO2 in the effluent ranging from 3.4 to 41.2 mg L−1. It is this lag-time that provides the early warning for process failure, thus mitigating action can be taken to avoid nitrogen contamination of receiving waters.  相似文献   

15.
This study investigates sources of uncertainty in the modelling of greenhouse gas emissions from wastewater treatment, through the use of local and global sensitivity analysis tools, and contributes to an in-depth understanding of wastewater treatment modelling by revealing critical parameters and parameter interactions. One-factor-at-a-time sensitivity analysis is used to screen model parameters and identify those with significant individual effects on three performance indicators: total greenhouse gas emissions, effluent quality and operational cost. Sobol's method enables identification of parameters with significant higher order effects and of particular parameter pairs to which model outputs are sensitive. Use of a variance-based global sensitivity analysis tool to investigate parameter interactions enables identification of important parameters not revealed in one-factor-at-a-time sensitivity analysis. These interaction effects have not been considered in previous studies and thus provide a better understanding wastewater treatment plant model characterisation. It was found that uncertainty in modelled nitrous oxide emissions is the primary contributor to uncertainty in total greenhouse gas emissions, due largely to the interaction effects of three nitrogen conversion modelling parameters. The higher order effects of these parameters are also shown to be a key source of uncertainty in effluent quality.  相似文献   

16.
Rapid, but unplanned urban development and the consequent urban sprawl coupled with economic growth have aggravated auto dependency in India over the last two decades. This has resulted in congestion and pollution in cities. The central and state governments have taken many ameliorative measures to reduce vehicular emissions. However, evolution of scientific methods for emission inventory is crucial. Therefore, an attempt has been made to estimate the emissions (running and start) from on-road vehicles in Chennai using IVE model in this paper. GPS was used to collect driving patterns.The estimated emissions from motor vehicles in Chennai in 2005 were 431, 119, 46, 7, 4575, 29, and 0.41 tons/days respectively for CO, VOC, NOx, PM, CO2, CH4 and N2O. It is observed from the results that air quality in Chennai has degraded. The estimation revealed that two and three-wheelers emitted about 64% of the total CO emissions and heavy-duty vehicles accounted for more than 60% and 36% of the NOx and PM emissions respectively. About 19% of total emissions were that of start emissions. It is also estimated that on-road transport contributes about 6637 tons/day CO2 equivalent in Chennai. This paper has further examined various mitigation options to reduce vehicular emissions. The study has concluded that advanced vehicular technology and augmentation of public transit would have significant impact on reducing vehicular emissions.  相似文献   

17.
The road transport sector is the largest consumer of commercial fuel energy within the transportation system in India and accounts for nearly 35% of the total liquid commercial fuel consumption by all sectors. Gasoline and diesel consumption for road transportation have quadrupled between 1980 and 2000 due to about nine times increase in the number of vehicles and four-fold increase in freight and passenger travel demands. The paper elaborates the trends of energy consumption and consequent emissions of greenhouse gases such as CO(2), CH(4) and N(2)O and ozone precursor gases like CO, NO(x) and NMVOC in the road transport sector in India for the period from 1980 to 2000. For the first time, efforts have been made to apportion the fuels, both diesel and gasoline, across different categories of vehicles operating on the Indian roads. In order to generate more comprehensive and complete emission estimates, additionally, other minor fuel types like light diesel oil and fuel oil along with lubricants have also been taken into account. Emission estimates have revealed that nearly 27 Mt of CO(2) were emitted in 1980, increasing to about 105 Mt in 2000. Similar trends have also been observed for other gases. Further scope for improvements in emission estimation is possible by generating country specific emission factors for different vehicle categories and improvement in documentation of fuel consumption at segregated levels by fuel types and vehicle types.  相似文献   

18.
《Journal of Urbanism》2013,6(3):213-235
Different patterns of urban development may have widely varying long-term effects on greenhouse gas (GHG) emissions. To investigate such effects, we used UPlan geographic information system–based software to model three 2050 urban-growth scenarios for Yolo County, a predominantly agricultural area near Sacramento, California. Two scenarios correspond to the Intergovernmental Panel on Climate Change’s A2 and B1 storylines. We also added a third, infill-only scenario called AB32-Plus that assumes continued strong climate change policy in California and highly compact urban development. Results show dramatically different levels of GHG emissions from transportation and residential-building energy use in the three scenarios, especially when compact urban development is combined with strong assumptions about energy efficiency and population. The preservation of farmland is also an important climate mitigation and adaptation benefit of the compact-development alternative.  相似文献   

19.
To separate human-induced changes from natural fluctuations in marine life requires long-term research. The western English Channel has been investigated from Plymouth for over 100 years. The abundance of marine life has been recorded and related to physical changes in the environment. By comparing different parts of the ecosystem we can demonstrate historic natural fluctuations, allowing prediction of effects of future global change. From the 1920s to the 1950s there was a period of warming of the sea, with increases in abundance of species of fish, plankton and intertidal organisms that are typically common in warmer waters to the south of Britain. After 1962 the sea cooled down and northern cold-water species became more abundant. Since the 1980s regional sea surface temperature has increased again and warm-water species are once more becoming abundant.  相似文献   

20.
An estimated 32,000 golf courses worldwide (approximately 25,600 km2), provide ecosystem goods and services and support an industry contributing over $124 billion globally. Golf courses can impact positively on local biodiversity however their role in the global carbon cycle is not clearly understood. To explore this relationship, the balance between plant-soil system sequestration and greenhouse gas emissions from turf management on golf courses was modelled. Input data were derived from published studies of emissions from agriculture and turfgrass management. Two UK case studies of golf course type were used, a Links course (coastal, medium intensity management, within coastal dune grasses) and a Parkland course (inland, high intensity management, within woodland).Playing surfaces of both golf courses were marginal net sources of greenhouse gas emissions due to maintenance (Links − 2.2 ± 0.4 Mg CO2e ha− 1 y− 1; Parkland − 2.0 ± 0.4 Mg CO2e ha− 1 y− 1). A significant proportion of emissions were from the use of nitrogen fertiliser, especially on tees and greens such that 3% of the golf course area contributed 16% of total greenhouse gas emissions. The area of trees on a golf course was important in determining whole-course emission balance. On the Parkland course, emissions from maintenance were offset by sequestration from turfgrass, and trees which comprised 48% of total area, resulting in a net balance of − 5.4 ± 0.9 Mg CO2e ha− 1 y− 1. On the Links course, the proportion of trees was much lower (2%) and sequestration from links grassland resulted in a net balance of − 1.6 ± 0.3 Mg CO2e ha− 1 y− 1. Recommendations for golf course management and design include the reduction of nitrogen fertiliser, improved operational efficiency when mowing, the inclusion of appropriate tree-planting and the scaling of component areas to maximise golf course sequestration capacity. The findings are transferrable to the management and design of urban parks and gardens, which range between fairways and greens in intensity of management.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号