首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A numerical computer method using planar flexural finite line element for the determination of buckling loads of beams, shafts and frames supported by rigid or elastic bearings is presented. Buckling loads and the corresponding mode vectors are determined by the solution of a linear set of eigenvalue equations of elastic stability. The elastic stability matrix is determined as the product of the bifurcation sidesway flexibility matrix and the second order bifurcation sidesway stiffness matrix which is formed using the element bifurcation sidesway stiffness matrices. The bifurcation sidesway flexibility matrix is determined by partitioning the inverse of the global external stiffness matrix of the system which is formed from the element data using the element stiffness matrices. The method is directly applicable to the determination of the buckling loads of beams and frames partially or fully supported by elastic foundations where the foundation stiffness is approximated by a discrete set of springs. The method of the article provides means to consider complex boundary conditions in buckling problems with ease. Four numerical examples are included to illustrate the industrial applications of the contents of the article.  相似文献   

2.
In this paper, a new and simple approach is presented to exactly calculate the critical buckling loads of beams with arbitrarily axial inhomogeneity. For various end boundary conditions, we transform the governing equation with varying coefficients to linear algebraic equations; then a characteristic equation in critical buckling loads will be obtained. Several examples of estimating buckling loads under typical end supports are discussed. By comparing our numerical results with the exact and existing results for homogeneous and nonhomogeneous beams, it can be found that our method has fast convergence and the obtained numerical results have high accuracy. Moreover, the buckling behavior of a functionally graded beam composed of aluminum and zirconia as two constituent phases is investigated for axially varying material properties. The effects of gradient parameters on the critical buckling loads are elucidated. Finally, we give an example to illustrate the enhancement of the load-carrying capacity of tapered beams for admissible shape profiles with constant volume or weight. The proposed method is of benefit to optimum design of beams against buckling in engineering applications.  相似文献   

3.
《Computers & Structures》1986,23(2):217-231
Two new finite element formulations for the calculation of the lateral buckling load for elastic straight prismatic thin-walled open beams under conservative static loads, are presented. The stability criterion used is based on the positive definiteness of the second variation of the total potential energy. One formulation is suitable for sections where the initial bending is about a dominant major axis. The other finite element formulation takes account of initial bending curvature and essentially takes the form of a quadratic eigenvalue problem. Both formulations are tested with problems that have classical solutions or experimentally determined results and are shown to be accurate.  相似文献   

4.
A finite element scheme for the large-displacement analysis of elastic-plastic beams and columns is presented. The proposed method, which assures continuous deflections and continuous slopes at the element junctions, is shown to furnish fairly accurate results with a minimal number of elements. Comparisons are made with existing results for laterally loaded beams on elastic foundations and for elastic columns on bi-linear elastoplastic foundations. The effect of imperfections on the buckling of elastic-plastic columns is also investigated.  相似文献   

5.
Based on a formulation for the elastic distortional buckling of tapered I-beams, some observations have been developed that are germane to the finite element modelling of the lateral buckling of beams. In particular, it is shown that a commonly cited formulation omits a boundary term, and can in some cases lead to erroneous results. A new set of degrees of freedom for distortional buckling are proposed, and these may be modified easily to account for lateral buckling in the simplified case.  相似文献   

6.
In this paper, a numerical method for linear and nonlinear vibrations analysis of viscoelastic sandwich beams and plates is developed with finite element based solution. This method couples the harmonic balance technique to complex mode Galerkin’s procedure. This results in a scalar nonlinear complex amplitude–frequency relationship involving numerical computation of three coefficients. A general formulation taking into account the frequency dependence of the viscoelastic behaviour allowing to intoduce any viscoelastic law is given. Complex eigenmodes are numerically computed in a general procedure and used as Galerkin’s basis. The free and steady-state vibrations analyses of viscoelastic sandwich beams and plates are investigated for constant and frequency dependent viscoelastic laws and for various boundary conditions. The equivalent frequencies and loss factors as well as forced harmonic response and phase curves are performed. The obtained results show the efficiency of the present approach to large amplitudes vibrations of viscoelastic sandwich structures with nonlinear frequency dependence.  相似文献   

7.
A finite difference method assuming parabolic variation of contact pressure distribution is presented to obtain the influence lines for bending moments in beams on an elastic foundation. These influence lines can conveniently be used to find moments in beams on elastic foundations due to any type of loads. The computational procedure presented is simple. Accurate results are obtained with only 10 elements.  相似文献   

8.
For spatial stability analysis of shear deformable thin-walled curved beams with non-symmetric cross-sections, an improved analytical formulation is proposed. Firstly the displacement field is introduced considering the second order terms of semi-tangential rotations. Next an elastic strain energy is derived by using transformation equations of displacement parameters and stress resultants and considering shear deformation effects due to shear forces and restrained warping torsion. And then the potential energy due to initial stress resultants is consistently derived with accurate calculation of Wagner effect. In addition, closed-form solutions for in-plane and lateral-torsional buckling loads of curved beams subjected to uniform compression and pure bending are newly derived. In the companion paper, FE procedures are developed by using curved and straight beam elements with arbitrary thin-walled sections. In numerical examples, to illustrate accuracy and validity of this study, closed-form solutions for in-plane and out-of-plane buckling loads are presented and compared with those obtained from analytical solutions by other researchers.  相似文献   

9.
In the companion paper, an improved formulation for spatial stability analysis of shear deformable thin-walled curved beams with non-symmetric cross-sections is presented based on the displacement field considering both constant curvature effects and the second-order terms of semi-tangential rotations. Thus the elastic strain energy and the potential energy due to initial stress resultants are consistently derived. Also closed-form solutions for in-plane and lateral-torsional buckling of curved beams subjected to uniform compression and pure bending are newly derived for mono-symmetric thin-walled curved beams under simply supported and clamped end conditions. In this paper, F. E. procedures are developed by using curved and straight beam elements with non-symmetric cross-sections. Analytical and numerical solutions for spatial buckling of shear deformable thin-walled circular beams are presented and compared in order to illustrate the accuracy and the practical usefulness of this study. In addition, the extensive parametric studies are performed on spatial stability behavior of curved beams. Particularly transition and crossover phenomena of buckling mode shapes with change in curvature and length of beam on buckling for curved beams are investigated for the first time.  相似文献   

10.
This work develops a framework for SIMP-based topology optimization of a metallic panel structure subjected to design-dependent aerodynamic, inertial, elastic, and thermal loads. Multi-physics eigenvalue-based design metrics such as thermal buckling and dynamic flutter are derived, along with their adjoint-based design derivatives. Locating the flutter point (Hopf-bifurcation) in a precise and efficient manner is a particular challenge, as is outfitting the optimization problem with sufficient constraints such that the critical flutter mode does not switch during the design process. Results are presented for flutter-optimal topologies of an unheated panel, thermal buckling-optimal topologies, and flutter-optimality of a heated panel (where the latter case presents a topological compromise between the former two). The effect of various constraint boundaries, temperature gradients, and (for the flutter of the heated panel) thermal load magnitude are assessed. Off-design flutter and thermal buckling boundaries are given as well.  相似文献   

11.
This paper deals with nonlocal divergence and flutter instability analysis of carbon nanotubes (CNTs) conveying fluid embedded in an elastic foundation under magnetic field. Nonlocal constitutive equations of Eringen and Euler–Bernoulli beam theory are used in the formulations. Also, the foundation is described by the Winkler and Pasternak models. The governing equation of motion and boundary conditions are derived using extended Hamilton’s variational principle. The extended Galerkin’s approach is adopted to reduce the partial differential equation governing the dynamics of the CNTs to a system of coupled ordinary differential equations. In the present study, four different boundary conditions are considered, namely the pined–pined (P–P), clamped–pined (C–P), clamped–clamped (C–C) and clamped–free (C–F). A detailed parametric study is conducted to elucidate the effects of the nonlocal effect, longitudinal magnetic field, elastic Winkler and Pasternak foundations and geometrically boundary conditions on the instability characteristic of CNTs. It was observed that the only instability type for the investigated CNT with clamped–free boundary condition (cantilever) is flutter, while CNT conveying fluid with both ends supported loses its stability by divergence first and then by flutter with increase in fluid velocity. It was also found that the magnetic field and the Winkler and Pasternak foundations increase the stiffness of the system. Therefore, flutter instability region is enlarged significantly due to the existence of springs, shear foundations and magnetic field. Also, results show that the nonlocal parameter has a prominent effect on the stability behavior of CNTs, in which increasing nonlocal parameter results in the decrease in stability region. Furthermore, it was shown that the stability behavior of CNT is strongly affected by different boundary conditions. Finally, the validity of the present analysis is confirmed by comparing the results with those obtained from the literature.  相似文献   

12.
An analysis is presented for the vibration and stability of a non-uniform double-beam subjected to tangential follower forces distributed over the center line by use of the transfer matrix approach. For this purpose, the governing equations of the beam are written as a coupled set of first-order differential equations by using the transfer matrix of the beam. Once the matrix has been determined by numerical integration of the equations, the eigenvalues of vibration and the critical flutter loads are obtained. The method is applied to beams with linearly varying depths and breadths, subjected to a concentrated follower force, and the natural frequencies and flutter loads are calculated numerically, to provide information about the effects on them of varying cross-section span and stiffness of intermediate supports, and the slenderness ratio.  相似文献   

13.
This paper presents an investigation on elastic buckling strength of curved girder webs subjected to uniform shears or bending stresses at the edges.An elastic 20 degrees of freedom finite element model was used to formulate the eigenvalue problem and a Gauss-Seidel iterative procedure was employed to yield the lowest critical edge loads.In case of pure bending, the investigation is extended into the plastic range. The deformation theory of plasticity in conjunction with a new formulation of the secant modulus is used to derive the elasto-plastic buckling equations. The same Gauss-Seidel iterative procedure was used to find the critical load for each assumed stress level. Further iterations with incremental stress were done to match the elasto-plastic buckling stresses. The material is assumed to be elastic-perfectly plastic and incompressible.In order to aid design professions, the dimensions of the web panel studied are within the practical ranges of curved plate girders. Four boundary conditions that represent various constrain conditions from flanges to stiffeners of plate girder designs, were considered.The results are presented in graphical forms. Interaction curves relating to various dimensionless parameters are constructed. Comparisons and convergence studies were made with existing available data. It is found that boundary conditions and aspect ratio influence the buckling stresses greatly. However, curvature effect is relatively insignificant over the range of practical application.  相似文献   

14.
The transient response of cracked composite materials made of piezoelectric and piezomagnetic phases, when subjected to in-plane magneto-electro-mechanical dynamic loads, is addressed in this paper by means of a mixed boundary element method (BEM) approach. Both the displacement and traction boundary integral equations (BIEs) are used to develop a single-domain formulation. The convolution integrals arising in the time-domain BEM are numerically computed by Lubich’s quadrature, which determines the integration weights from the Laplace transformed fundamental solution and a linear multistep method. The required Laplace-domain fundamental solution is derived by means of the Radon transform in the form of line integrals over a unit circumference. The singular and hypersingular BIEs are numerically evaluated in a precise and efficient manner by a regularization procedure based on a simple change of variable, as previously proposed by the authors for statics. Discontinuous quarter-point elements are used to properly capture the behavior of the extended crack opening displacements (ECOD) around the crack-tip and directly evaluate the field intensity factors (stress, electric displacement and magnetic induction intensity factors) from the computed nodal data. Numerical results are obtained to validate the formulation and illustrate its capabilities. The effect of the combined application of electric, magnetic and mechanical loads on the dynamic field intensity factors is analyzed in detail for several crack configurations under impact loading.  相似文献   

15.

This paper aims to investigate the size scale effect on the buckling and post-buckling of single-walled carbon nanotube (SWCNT) rested on nonlinear elastic foundations using energy-equivalent model (EEM). CNTs are modelled as a beam with higher order shear deformation to consider a shear effect and eliminate the shear correction factor, which appeared in Timoshenko and missed in Euler–Bernoulli beam theories. Energy-equivalent model is proposed to bridge the chemical energy between atoms with mechanical strain energy of beam structure. Therefore, Young’s and shear moduli and Poisson’s ratio for zigzag (n, 0), and armchair (n, n) carbon nanotubes (CNTs) are presented as functions of orientation and force constants. Conservation energy principle is exploited to derive governing equations of motion in terms of primary displacement variable. The differential–integral quadrature method (DIQM) is exploited to discretize the problem in spatial domain and transformed the integro-differential equilibrium equations to algebraic equations. The static problem is solved for critical buckling loads and the post-buckling deformation as a function of applied axial load, CNT length, orientations and elastic foundation parameters. Numerical results show that effects of chirality angle, boundary conditions, tube length and elastic foundation constants on buckling and post-buckling behaviors of armchair and zigzag CNTs are significant. This model is helpful especially in mechanical design of NEMS manufactured from CNTs.

  相似文献   

16.
《Computers & Structures》2002,80(27-30):2195-2207
A computer method based on the classical shell and plate theories is presented for the elastic analysis of cylindrical water tanks subjected to axisymmetrical loading and post-tensioning loads. A spherical dome or circular plate roof, cylindrical container, top and bottom ring beams together with a circular plate foundation are considered as possible components of a water tank in the flexibility formulation. Classical shell, plate, and ring beam theories are used to obtain flexibility coefficients. A computer program has been developed based on this formulation and successfully used in the design of post-tensioned concrete water tanks with diameters of 80 m built in Saudi Arabia.  相似文献   

17.

In this present work, buckling analysis of restrained nanotubes placed in electromagnetic field is studied on the basis of Euler–Bernoulli beam theory in conjunction with Eringen’s nonlocal elasticity theory. The modal displacement function is assumed for the stability analysis in order to discretize the derived governing equation. A Fourier sine series with Stoke’s transformation is utilized to investigate the buckling response. The essential advantage of this transformation is its ability of dealing with various boundary conditions to determine the buckling loads. For demonstrate the effects of various parameters such as Hartmann parameter, spring parameter and mode number on the stability response and critical buckling load of electromagnetic nanobeam a detailed study is presented. Variations of buckling loads, critical buckling loads and buckling load ratios of the nanobeam are exhibited with a number of tables and plotted figures. The results obtained from the analysis are discussed on the tables and figures.

  相似文献   

18.
Costabel and Dauge proposed a variational setting to solve numerically the time-harmonic Maxwell equations in 3D polyhedral geometries, with a continuous approximation of the electromagnetic field. In order to remove spurious eigenmodes, three computational strategies are then possible. The original method, which requires a parameterization of the variational formulation. The second method, which is based on an a posteriori filtering of the computed eigenmodes. And the third method, which uses a mixed variational setting so that all spurious modes are removed a priori. In this paper, we discuss the relative merits of the approaches, which are illustrated by a series of 3D numerical examples.  相似文献   

19.
In this paper an axially compressed non-uniform column connected with beams at its two ends is studied. The stepped axial loads act eccentrically on the column at intermediate points. The non-linear equilibrium equations of this model are established in the case of non-sway and sway mode, respectively. Using these equations and following an iteration procedure, the equivalent buckling length coefficients and the corresponding critical loads are obtained and the results are presented in an easy to use graphical form.  相似文献   

20.
The eigenvalue problems of clamped-free and hinged-hinged Bernoulli-Euler beams on elastic foundation with a single edge crack, axial loading and excitation force were numerically formulated using the differential quadrature method (DQM). Appropriate boundary conditions accompanied the DQM to transform the partial differential equation of a Bernoulli-Euler beam with a single edge crack into a discrete eigenvalue problem. The DQM results for the natural frequencies of cracked beams agree well with other literature values. The sampling point number effect, the location of the crack effect and the depth of the crack effect on the accuracy variation of calculated natural frequencies are presented by using two elements in this work. The effects of axial loading, foundation stiffness, opening crack and closing crack are also studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号