首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
Using the force mapping mode of atomic force microscopy (AFM), we measured spatial distribution of elastic moduli of living mouse fibroblasts (NIH3T3) in a physiological condition. The nuclear portion of the cellular surface is about 10 times softer than the surroundings. Stiffer fibers are confirmed in the elastic images. In order to investigate origin of the softer nuclear portion and the stiffer fibers, we fixed the identical cells imaged by the AFM, and carried out immunofluorescence observation for three types of cytoskeletal filaments--actin filaments, microtubules, and intermediate filaments, using confocal laser scanning microscopy (CLSM). A comparison between the AFM and the CLSM images revealed that the elasticity of the cells was concerned not only with the distribution of actin network, but also with intermediate filaments, whereas microtubules had no large effect on the measured elasticity.  相似文献   

2.
Actin filaments and microtubules, both in situ and in vitro, were imaged using high-resolution scanning electron microscopy (HRSEM) at low temperature. For visualization of cytoskeletal elements in situ, fibroblasts were first extracted and fixed; for cytoskeletal elements in vitro, purified proteins were polymerized and fixed. Both types of specimen were then subjected to plunge freezing, controlled freeze-drying, cryo-sputter coating with a thin chromium layer, cryo- transferring and cryo-observation in an FESEM. The three-dimensional architecture of the cytoskeleton was well preserved, permitting examination of the structural relationships among cytoskeletal elements. Actin filaments and microtubules were identified by their characteristic helical features. Two periodicities of actin filaments, the short pitch of the left-handed helix measured at 5·5 nm and the 37-nm-long pitch helix, were revealed. Individual protofilaments were seen in microtubules as well as the characteristic 4-nm repeat of tubulin subunits along the protofilament. Clathrin cages were also observed. This technique provides a powerful approach for direct imaging of macromolecular structures with high contrast and high signal-to-noise ratio at a resolution of 2–3 nm.  相似文献   

3.
Brown  Troncoso  & Hoh 《Journal of microscopy》1998,191(3):229-237
Neurofilaments are cytoskeletal components of neurones that are thought to play an important structural role in the axon. Specific functions of neurofilaments are not yet well defined; however, other intermediate filaments are known to have structural and mechanical functions in different cell types. The atomic force microscope (AFM) can be used to visualize and manipulate biological structures through direct physical contact. This allows the AFM to be used to probe the mechanical properties of these structures. In this paper we present AFM images of native neurofilaments isolated from bovine spinal cord, composed of NF-L, NF-M and NF-H, and filaments polymerized in vitro from purified NF-L. Morphologically these structures, in solution and under ambient conditions, are in agreement with previous data from electron microscopy. However, repeated scanning of NF-L homopolymers (in solution) produced significant disruptions of segments of filaments, both within and at the ends of the filaments. This disruption resulted in complete loss of portions of the filaments and in breaks in the continuity of the filaments. Repeated scanning of isolated native neurofilaments under similar conditions produced no detectable structural changes. Under extremely high applied forces the native neurofilaments were bent and distorted by the action of the AFM tip, but were never broken. These data suggest that purified NF-L is not sufficient to confer complete mechanical stability to neurofilaments.  相似文献   

4.
The surface structure of actin filaments (F-actin) was visualized at high resolution, by atomic force microscopy (AFM) in aqueous solution, in large paracrystals prepared on positively charged lipid monolayers. The increased stability of these closely packed specimens allowed us to show that both the long pitch (38 nm) and the monomer (5.8 nm) can be directly resolved by AFM in the contact mode. The right-handed helical surface, distinguishable in high resolution images, was compared with reconstructed models based on electron microscopy. The height of the rafts, a measure of the actin filament diameter, was 10 ± 1 nm, whereas the smaller inter-filament distance, 8 ± 1 nm, was consistent with interdigitation of the filaments. The 10 ± 1 nm F-actin diameter is in good agreement with the results of fibre X-ray diffraction. As such specimens are relatively easy to prepare without specialized equipment, this method may allow the study of the thin filaments in which F-actin-associated proteins are also present.  相似文献   

5.
Wang Z  Zhou C  Wang C  Wan L  Fang X  Bai C 《Ultramicroscopy》2003,97(1-4):73-79
Atomic force microscopy (AFM) and scanning tunneling microscopy (STM) have been employed in situ and ex situ to directly study the aggregation of beta-amyloid(1-42) (Abeta42) peptide on hydrophobic graphite.From in situ AFM images, Abeta42 peptides were seen to aggregate into the sheets that preferred to three orientations with characteristic 3-fold symmetry (Proc. Natl. Acad. Sci. USA 96 (1999) 3688). The sheets were formed by parallel narrow lines with a height of 0.8-1.0nm and a width of 12-14nm. The narrow lines looked like beaded chains and have a right-handed axial periodicity.The high-resolution ex situ AFM and STM images showed that some fibrils of beta-amyloid had a characteristic domain texture, indicating they were formed through the association of protofibrils and monomers. The fibril containing lateral associated filaments that exhibited right-handed twist was clearly observed in the STM image.These results provide important clues to study the detailed structure of beta-amyloid aggregates and the mechanism of the Abeta fibrils formation on hydrophobic surface.  相似文献   

6.
气/液两用型原子力显微镜及其应用研究   总被引:1,自引:1,他引:0  
伏霞  刘超  章海军 《光学仪器》2008,30(5):61-64
发展了一种气/液两用型原子力显微镜(AFM)系统,讨论了其工作原理,给出了优化的气/液两用型探头及扫描与反馈控制电路。利用该型AFM系统分别对大气环境下的硅片以及液体环境下的刀片和多孔氧化铝样品进行了扫描检测。实验结果表明,该型AFM系统在大气和液体环境中均可扫描获得理想的AFM图像,分辨力达到纳米量级,扫描范围可达4000nm×4000nm,可满足各种微纳米扫描测量的要求。  相似文献   

7.
We have developed a procedure for partially relaxing the barley metaphase chromosomes and exposing fibrous structures from the chromosomes. The observation by atomic force microscopy (AFM) showed that the fibrous structures are typically 0.5 to 1 microm long and 40 to 50 nm in diameter. In higher magnification imaging, we found the fibrous structures were composed of aligned granules and looked like "knobby fiber." These observations are consistent with previously reported features of chromatin fiber observed by AFM and scanning electron microscopy, suggesting that the structures correspond to 30 nm chromatin fibers. We observed the chromatin fiber extending straight from the periphery of the chromosomes in most cases, but fibers with different shapes, such as loop and spiral, were also observed. The procedure reported here will provide a new approach for observing the organization of chromatin fiber to higher-order structures by AFM and other high-resolution microscopy.  相似文献   

8.
Meller K  Theiss C 《Ultramicroscopy》2006,106(4-5):320-325
We describe a technical method of cell permeabilisation and embedding to study the organisation and distribution of intracellular proteins with aid of atomic force microscopy and confocal laser scanning microscopy in identical areas. While confocal laser scanning microscopy is useful for the identification of certain proteins subsequent labelling with markers or antibodies, atomic force microscopy allows the observation of macromolecular structures in fixed and living cells. To demonstrate the field of application of this preparatory technique, cells were permeabilised, fixed, and the actin cytoskeleton was stained with phalloidin-rhodamine. Confocal laser scanning microscopy was used to show the organisation of these microfilaments, e.g. geodesic dome structures. Thereafter, cells were embedded in Durcupan water-soluble resin, followed by UV-polymerisation of resin at 4 degrees C. This procedure allowed intracellular visualisation of the cell nucleus or cytoskeletal elements by atomic force microscopy, for instance to analyse the globular organisation of actin filaments. Therefore, this method offers a great potential to combine both microscopy techniques in order to understand and interpret intracellular protein relations, for example, the biochemical and morphological interaction of the cytoskeleton.  相似文献   

9.
EGF-stimulated lamellipod extension in adenocarcinoma cells   总被引:10,自引:0,他引:10  
The extension of lamellipodia has been triggered by the application of epidermal growth factor (EGF). We have used an atomic force microscope (AFM) to investigate this lamellipodial extension. During extension we could detect an increase in height from about 500 nm for the stable lamellipodium to typical values of 600-800 nm for the extending lamellipodium. The AFM was also used to determine the mechanical properties of the lamellipodium where we found a decrease of the elastic modulus by a factor of 1.4 at the same location within the same cell. Both findings are consistent with the cortical expansion hypothesis, suggesting that severing of actin filaments, leading to a swelling of the cytoskeleton, generates the protrusive force during lamellipodial extension.  相似文献   

10.
A new device (NTEGRA Tomo) that is based on the integration of the scanning probe microscope (SPM) (NT‐MDT NTEGRA SPM) and the Ultramicrotome (Leica UC6NT) is presented. This integration enables the direct monitoring of a block face surface immediately following each sectioning cycle of ultramicrotome sectioning procedure. Consequently, this device can be applied for a serial section tomography of the wide range of biological and polymer materials. The automation of the sectioning/scanning cycle allows one to acquire up to 10 consecutive sectioned layer images per hour. It also permits to build a 3‐D nanotomography image reconstructed from several tens of layer images within one measurement session. The thickness of the layers can be varied from 20 to 2000 nm, and can be controlled directly by its interference colour in water. Additionally, the NTEGRA Tomo with its nanometer resolution is a valid instrument narrowing and highlighting an area of special interest within volume of the sample. For embedded biological objects the ultimate resolution of SPM mostly depends on the quality of macromolecular preservation of the biomaterial during sample preparation procedure. For most polymer materials it is comparable to transmission electron microscopy (TEM). The NTEGRA Tomo can routinely collect complementary AFM and TEM images. The block face of biological or polymer sample is investigated by AFM, whereas the last ultrathin section is analyzed with TEM after a staining procedure. Using the combination of both of these ultrastructural methods for the analysis of the same particular organelle or polymer constituent leads to a breakthrough in AFM/TEM image interpretation. Finally, new complementary aspects of the object's ultrastructure can be revealed.  相似文献   

11.
In this study we report an atomic force microscopy (AFM) investigation of the actin cortical cytoskeleton of Xenopus laevis oocytes. Samples consisted of inside‐out orientated plasma membrane patches of X. laevis oocytes with overhanging cytoplasmic material. They were spread on a freshly cleaved mica surface, subsequently treated with Triton X‐100 detergent and chemically fixed. The presence of actin fibres in oocyte patches was proved by fluorescence microscopy imaging. Contact mode AFM imaging was performed in air in constant force conditions. Reproducible high‐resolution AFM images of a filamentous structure were obtained. The filamentous structure was identified as an actin cortical cytoskeleton, investigating its disaggregation induced by cytochalasin D treatment. The thinnest fibres showed a height of 7 nm in accordance with the diameter of a single actin microfilament. The results suggest that AFM imaging can be used for the high‐resolution study of the actin cortical cytoskeleton of the X. laevis oocyte and its modifications mediated by the action of drugs and toxins.  相似文献   

12.
Electroless silver coating of rod-like glass particles   总被引:2,自引:0,他引:2  
Moon JH  Kim KH  Choi HW  Lee SW  Park SJ 《Ultramicroscopy》2008,108(10):1307-1310
An electroless silver coating of rod-like glass particles was performed and silver glass composite powders were prepared to impart electrical conductivity to these non-conducting glass particles. The low density Ag-coated glass particles may be utilized for manufacturing conducting inorganic materials for electromagnetic interference (EMI) shielding applications and the techniques for controlling the uniform thickness of silver coating can be employed in preparation of biosensor materials. For the surface pretreatment, Sn sensitization was performed and the coating powders were characterized by scanning electron microscopy (SEM), focused ion beam microscopy (FIB), and atomic force microscopy (AFM) along with the surface resistant measurements. In particular, the use of FIB technique for determining directly the Ag-coating thickness was very effective on obtaining the optimum conditions for coating. The surface sensitization and initial silver loading for electroless silver coating could be found and the uniform and smooth silver-coated layer with thickness of 46nm was prepared at 2mol/l of Sn and 20% silver loading.  相似文献   

13.
目的:探讨原子力显微镜(AFM)在研究人脐静脉内皮细胞(ECV304)表面形貌、超微结构及纳米机械性质等方面的应用,讨论ECV304超微结构和机械性质与其功能的关系。方法:利用AFM对ECV304细胞的表面形貌及生物机械性质进行表征与测量。结果:在AFM下观察到用普通光学显微镜难以观察到的ECV304细胞的独特的形态结构,如细胞骨架、伪足及细胞边缘微丝等。ECV304细胞呈现长梭形、多角形、圆形等多种形态,细胞表面平均粗糙度为320.52±75.98 nm,表面均匀分布微绒毛,细胞周围有铺展的圆盘状物质。力曲线定量分析得出针尖与细胞表面的非特异性粘附力为75±14 pN。结论:通过AFM成像和力曲线测量表明,ECV304细胞呈圆形,多角形,梭形等多种形态,针尖与细胞膜表面问的粘附力比较小,约75±14pN。  相似文献   

14.
The internal cell wall structure of the bacterium Lactobacillus helveticus has been observed in situ in aqueous solution using an atomic force microscope (AFM). The AFM tip was used not only for imaging but presumably to remove mechanically large patches of the outer cell wall after appropriate chemical treatment, which typically leaves the bacteria alive. The surface exposed after this "surgery" revealed approximately 26 nm thick twisted strands within the cell wall. The structure and location of the observed strands are consistent with the glycan backbone of peptidoglycan fibers that give strength to the cell wall. The structural organization of these fibers has not been observed previously.  相似文献   

15.
We describe a technique for studying living cells with the atomic force microscope (AFM) in tapping mode using a thermostated, controlled-environment culture system. We also describe the integration of the AFM with bright field, epifluorescence and surface interference microscopy, achieving the highest level of integration for the AFM thus far described. We succeeded in the continuous, long-term imaging of relatively flat but very fragile cytoplasmic regions of COS cells at a lateral resolution of about 70 nm and a vertical resolution of about 3 nm. In addition, we demonstrate the applicability of our technology for continuous force volume imaging of cultured vertebrate cells.
The hybrid instrument we describe can be used to collect simultaneously a diverse variety of physical, chemical and morphological data on living vertebrate cells. The integration of light microscopy with AFM and steady-state culture methods for vertebrate cells represents a new approach for studies in cell biology and physiology.  相似文献   

16.
Atomic force microscopy (AFM) has been used to image a wide variety of cells. Fixed and dried-coated, wet-fixed or living cells were investigated. The major advantage of AFM over SEM is the avoidance of vacuum and electrons, whereas imaging can be done at environmental pressure and in aqueous conditions. Evidence of the successful application of AFM in biological imaging is provided by comparing results of AFM with SEM and/or TEM. In this study, we investigated surface and submembranous structures of living and glutaraldehyde-fixed colon carcinoma cells, skin fibroblasts and liver macrophages by AFM. Special attention was paid to the correct conditions for the acquisition of images of the surface of these cells, because quality SEM examinations have already been abundantly presented.
AFM imaging of living cells revealed specific structures, such as the cytoskeleton, which were not observed by SEM. Membrane structures, such as ruffles, lamellipodia, microspikes and microvilli, could only clearly be observed after fixing the cells with 0.1% glutaraldehyde. AFM images of living cells were comparable to SEM images of fixed, dried and coated cells, but contained a number of artefacts due to tip–sample interaction. In addition, AFM imaging allowed the visualization of cytoplasmic submembranous structures without the necessity for further preparative steps, allowing us: (i) to follow cytoskeletal changes in fibroblasts under the influence of the microfilament disrupting agent latrunculin A; (ii) to study particle phagocytosis in macrophages. Therefore, in spite of the slow image acquisition of the AFM, the instrument can be used for high-resolution real-time studies of dynamic changes in submembranous structures.  相似文献   

17.
Atomic force microscopy (AFM) is an emerging technique for imaging biological samples at subnanometer resolution; however, the method is not widely used for cell imaging because it is limited to analysis of surface topology. In this study, we demonstrate identification and ultrastructural imaging of microfilaments using new approaches based on AFM. Photodynamic therapy (PDT) with a new chlorin-based photosensitizer DH-II-24 induced cell shrinkage, membrane blebbing, and reorganization of cytoskeletons in bladder cancer J82 cells. We investigated cytoskeletal changes using confocal microscopy and atomic force microscopy. Extracellular filaments formed by PDT were analyzed with a tandem imaging approach based on confocal microscopy and atomic force microscopy. Ultrathin filaments that were not visible by confocal microscopy were identified as microfilaments by on-stage labeling/imaging using atomic force microscopy. Furthermore, ultrastructural imaging revealed that these microfilaments had a stranded helical structure. Thus, these new approaches were useful for ultrastructural imaging of microfilaments at the molecular level, and, moreover, they may help to overcome the current limitations of fluorescence-based microscopy and atomic force microscopy in cell imaging.  相似文献   

18.
Established microscopies such as Scanning Electron Microscopy (SEM) and more recent developments such as Atomic Force Microscopy (AFM) and X-ray Photo-Electron Emission spectroMicroscopy (X-PEEM) can only image the sample surface. We present an argon sputtering method able to progressively expose inner cell structures without apparent damage. By varying the sputtering time, the structure of cell cytoskeleton, vesicles, mitochondria, nuclear membrane, and nucleoli can be imaged. We compared images obtained with confocal fluorescence microscopy, transmission electron microscopy (TEM), SEM, and X-PEEM on similar samples after argon sputtering, then confirmed the similarity of reference intracellular structures, including cytoskeleton fibers, cell-cell and cell-substrate adhesion structures, and secretory vesicles. We conclude that the sputtering method is a new valuable tool for surface sensitive microscopies.  相似文献   

19.
Xenopus oocytes contain a complex cytoskeleton composed of three filament systems: (1) microtubules, composed of tubulin and at least three different microtubule-associated proteins (XMAPs); (2) microfilaments composed of actin and associated proteins; and (3) intermediate filaments, composed of keratins. For the past several years, we have used confocal immunofluorescence microscopy to characterize the organization of the oocyte cytoskeleton throughout the course of oogenesis. Together with computer-assisted reconstruction of the oocyte in three dimensions, confocal microscopy gives an unprecedented view of the assembly and reorganization of the cytoskeleton during oocyte growth and differentiation. Results of these studies, combined with the effects of cytoskeletal inhibitors, suggest that organization of the cytoskeleton in Xenopus oocytes is dependent upon a hierarchy of interactions between microtubules, microfilaments, and keratin filaments. This article presents a gallery of confocal images and 3-D reconstructions depicting the assembly and organization of the oocyte cytoskeleton during stages 0-VI of oogenesis, a discussion of the mechanisms that might regulate cytoskeletal organization during oogenesis, and speculates on the potential roles of the oocyte cytoskeleton during oogenesis and axis formation.  相似文献   

20.
Chi H  Xiao Z  Chen J  Lu Z 《Scanning》2007,29(3):102-108
Phosphatic microfossils from the Doushantuo Formation, Guizhou, China, have been reported with preserved cellular structure or even sub-cellular structure in micron scale. However, more details in sub-micro scale have not been reported as having been found. The Fossil embryos from the acid residue of the phosphorite rocks of the Neoproterozoic Doushantuo Formation in south China have been studied with a scanning electron microscope (SEM) and an atomic force microscope (AFM). Some ultra-structures in sub-micro scale have been found by AFM on the surface of the fossil embryos. There are four types of structures found on the surface of the selected fossil embryos, the sizes of which vary from 30 to 645 nm in diameter under our AFM. One of the structures is composed of several big sub-units integrated with each other, and the size of the big sub-units is from 250 to 645 nm. Meanwhile, we also found an ultra-layer structure on the surface of the big sub-units, the thickness of which was about 10 nm. Thus we speculate that it could most probably be of biological origin. Therefore, AFM provides a new method for direct observation of the ultra-structure of the Doushantuo fossils in the sub-micro scale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号