首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Quartz tuning forks mounted with sharp tips provide an alternate method to silicon microcantilevers for probing the tip-substrate interaction in scanning probe microscopy. The high quality factor and stable resonant frequency of the tuning fork allow accurate measurements of small shifts in the resonant frequency as the tip approaches the substrate. To permit an accurate measure of surface interaction forces, the electrical and piezoelectromechanical properties of a tuning fork have been characterized using a fiber optical interferometer.  相似文献   

2.
We expand the range of applications of a tuning fork probe (TFP) in frequency-modulation atomic force microscopy (FM-AFM) by attaching a long metal tip at a certain angle. By the combined flexure of the metal tip and the tuning fork prong, this TFP can change the direction of the detectable force by switching the resonance frequency, which has not been realized with conventional TFPs with short tips. The oscillatory behavior of the tip apex of the TFP is predicted by computer simulations and is experimentally confirmed with scanning electron microscope. FM-AFM operations using this TFP are performed in various environments, i.e., in ultrahigh vacuum, air, and water. FM-AFM images obtained at an atomic step of highly oriented pyrolytic graphite in air show a clear difference depending on the excitation frequency. It is also revealed that the higher order flexural modes of this TFP are advantageous for FM-AFM in water due to the reduction in the degree of hydrodynamic damping.  相似文献   

3.
A new method using a microfabricated quartz double-ended tuning fork (DETF) resonator is presented for simultaneously measuring normal and lateral forces with accurate gap control. The quartz resonator provides high force sensitivity due to its smaller device size. An optical fiber probe for lateral force detection was combined with the resonator by adding a support frame, thereby for increasing lateral rigidity. The normal and lateral forces exerted by a lubricant in nanometer-sliding gaps were simultaneously measured using the quartz DETF resonator with the optical fiber probe. This method is useful for clarifying the tribological properties in small sliding gaps for micro/nano-mechanical devices such as the head–disk interface of hard disk drives.  相似文献   

4.
This study proposes a tuning fork probe based nanomanipulation robotic system for mechanical characterization of ultraflexible nanostructures under scanning electron microscope. The force gradient is measured via the frequency modulation of a quartz tuning fork and two nanomanipulators are used for manipulation of the nanostructures. Two techniques are proposed for attaching the nanostructure to the tip of the tuning fork probe. The first technique involves gluing the nanostructure for full range characterization whereas the second technique uses van der Waals and electrostatic forces in order to avoid destroying the nanostructure. Helical nanobelts (HNB) are proposed for the demonstration of the setup. The nonlinear stiffness behavior of HNBs during their full range tensile studies is clearly revealed for the first time. Using the first technique, this was between 0.009 N/m for rest position and 0.297 N/m before breaking of the HNB with a resolution of 0.0031 N/m. For the second experiment, this was between 0.014 N/m for rest position and 0.378 N/m before detaching of the HNB with a resolution of 0.0006 N/m. This shows the wide range sensing of the system for potential applications in mechanical property characterization of ultraflexible nanostructures.  相似文献   

5.
We present an ultra-fast scanning tunneling microscope with atomic resolution at 26 kHz scan rate which surpasses the resonant frequency of the quartz tuning fork resonator used as the fast scan actuator. The main improvements employed in achieving this new record are (1) fully low voltage design (2) independent scan control and data acquisition, where the tuning fork (carrying a tip) is blindly driven to scan by a function generator with the scan voltage and tunneling current (I(T)) being measured as image data (this is unlike the traditional point-by-point move and measure method where data acquisition and scan control are switched many times).  相似文献   

6.
We describe a new type of scanning probe microscope based on a superconducting quantum interference device (SQUID) that resides on the apex of a sharp tip. The SQUID-on-tip is glued to a quartz tuning fork which allows scanning at a tip-sample separation of a few nm. The magnetic flux sensitivity of the SQUID is 1.8 μΦ(0)/Hz and the spatial resolution is about 200 nm, which can be further improved. This combination of high sensitivity, spatial resolution, bandwidth, and the very close proximity to the sample provides a powerful tool for study of dynamic magnetic phenomena on the nanoscale. The potential of the SQUID-on-tip microscope is demonstrated by imaging of the vortex lattice and of the local ac magnetic response in superconductors.  相似文献   

7.
A shear mode micro-probing system was constructed for gap measurement of a precision slot die coater with a nominal gap width of 90 μm and a length of 200 mm. A glass micro-stylus with a nominal tip ball diameter of 52.6 μm was oscillated by a tuning fork quartz crystal resonator with its oscillation direction parallel to the measurement surfaces. An on-line qualification setup was established to compensate for the influences of the uncertainty sources, including the water layers on the measurement surfaces. The measurement uncertainty of the measured gap width was estimated to be less than 100 nm.  相似文献   

8.
This study presents a method of measurement of the form error of the tip ball in the tactile probing systems of a coordinate measuring machine (CMM) by using a rotating reference sphere. The measurement of the form error of the CMM probe tip was conducted without the use of additional external measuring instruments or sensors. The form errors of the probe tip ball and the reference sphere were separated from the probing coordinates of CMM by rotation of the reference sphere. The effectiveness of the proposed method was evaluated based on an uncertainty analysis. The uncertainty in measurement of diameter of the probe tip ball was estimated to be less than 0.5 μm.  相似文献   

9.
We present the implementation of a short‐tip tapping‐mode tuning fork near‐field scanning optical microscope. Tapping frequency dependences of the piezoelectric signal amplitudes for a bare tuning fork fixed on the ceramic plate, a short‐tip tapping‐mode tuning fork scheme and an ordinary tapping‐mode tuning fork configuration with an 80‐cm optical fibre attached are demonstrated and compared. Our experimental results show that this new short‐tip tapping‐mode tuning fork scheme provides a stable and high Q factor at the tapping frequency of the tuning fork and will be very helpful when long optical fibre probes have to be used in an experiment. Both collection and excitation modes of short‐tip tapping‐mode tuning fork near‐field scanning optical microscope are applied to study the near‐field optical properties of a single‐mode telecommunication optical fibre and a green InGaN/GaN multiquantum well light‐emitting diode.  相似文献   

10.
Characterization of novel nanoelectronic structures and materials requires advanced and high-resolution diagnostic methods. In this article new approach for high sensitivity measurements of electric surface properties using scanning probe microscopy is presented. In this procedure topography and tunneling current flowing between the metallic tip and the surface are observed simultaneously. In our design piezoelectric tuning fork equipped with metallic tip in shear force microscope is used.  相似文献   

11.
应用石英音叉谐振器的智能温度传感器   总被引:1,自引:1,他引:0  
徐军  尤波  李欣  马静 《光学精密工程》2009,17(6):1453-1459
为了实现高精密温度测量,设计了高性能数字温度传感器,该传感器由石英音叉谐振器,数字接口电路和基于现场可编程门阵列的传感器重置控制算法构成。依据石英晶体压电效应原理,对石英音叉谐振器的热敏切型和电极设置进行了研究;基于力学振动原理,导出石英音叉谐振器弯曲振动模式的微分方程;讨论了谐振式温度传感器的工作原理,提取出石英音叉温度传感器的特征参数并进行了非线性误差分析;采用光刻和侵蚀技术加工制作了石英音叉谐振器。该传感器的频率输出信号通过数字接口进入现场可编程门阵列,通过重置控制算法实现传感器的重置和现场自动校验。实验结果表明,在-20 ~140 ℃,该传感器的灵敏度可达65×10-6/℃,测温分辨率为0.001 ℃,响应时间为1 s,测温精度为0.01 ℃。  相似文献   

12.
We report an in situ method of preparing tips for scanning probe microscopy (SPM). Oriented single-crystal nickel oxide (NiO) rods were diced, using a wafer saw, to prepare artificial breaking points. Two geometries, a single rod and a two-sided cut rod were fabricated. The cleavable tips were mounted to a force sensor based on a quartz tuning fork and cleaved using the coarse approach of the SPM. Atomically resolved force microscopy images of NiO (001) were taken with these NiO tips.  相似文献   

13.
石英音叉是一种谐振频率稳定、品质因数高的时基器件,其音叉臂的谐振参数(谐振振幅和谐振频率)对微力极其敏感。利用石英音叉对外力的敏感性,与钨探针结合,构成一种新型的表面形貌扫描测头。该测头与xyz压电工作台结合,利用测头音叉臂谐振频率对扫描微力的敏感性,研制基于相位反馈控制的扫描探针显微镜。首先介绍石英音叉测头的构成、工作原理和特性测试,以及由该测头构建的扫描探针显微镜的结构和测试、分析。通过对测头和系统的测试结果分析,系统达到1.2 nm的垂直分辨率,并通过对一维栅的测量,给出扫描获得的试样表面微观形貌图以及相位图,证明系统的有效性。另外,由于采用大长径比的钨探针,该系统具有测量大深宽比微器件表面轮廓的能力。  相似文献   

14.
This paper presents a two coupled oscillators model to describe the dynamics of a tuning fork with a probe attached. The two coupled oscillators are unbalanced only in their effective masses and the damping ratios. By applying a frequency domain system identification approach in experimental investigation of various probe attachment cases, a good accuracy of the model is demonstrated. The effectiveness of the model is further demonstrated in quantitative analysis of the noise performance and the sensitivity of force sensing with a tuning fork probe. Compared with existing models, the proposed model can more accurately characterize the dynamics of a tuning fork probe.  相似文献   

15.
叙述了双端调谐音叉石英振梁式重力传感器的结构和工作原理。根据石英谐振器的谐振频率公式和石英晶体的压电效应原理,确定了石英谐振器的主要结构尺寸和电极设置。应用有限元法计算了该谐振器的谐振频率,显示了一阶模态振型,这为设计不同用途的石英振梁式加速度传感器提供了理论依据。  相似文献   

16.
The fabrication of a tuning fork based bent optical-fiber sensor and its application for topography and near-field image measurement of soft biological samples in physiological solution are reported. By adopting the bent optical fiber and tuning fork feedback scheme, the possibility of signal interference with stray light is minimized, which is especially important for near-field applications. From the measured tuning fork amplitude and its calibration with the preamplifier output voltage, it was determined that the interaction force between the fiber tip and a soft sample in liquid needs to be controlled within approximately 10 nN level and that the image quality depends sensitively to the interaction force. The results of topography measurements of fixed COS-7 and MCF-7 cells in phosphate buffered saline and of the near-field imaging of red blood cell also in phosphate buffered saline with a resolution of about 100 nm are presented.  相似文献   

17.
We have studied the dynamics of quartz tuning fork resonators used in atomic force microscopy taking into account the mechanical energy dissipation through the attachment of the tuning fork base. We find that the tuning fork resonator quality factor changes even in the case of a purely elastic sensor-sample interaction. This is due to the effective mechanical imbalance of the tuning fork prongs induced by the sensor-sample force gradient, which in turn has an impact on dissipation through the attachment of the resonator base. This effect may yield a measured dissipation signal that can be different from the one exclusively related to the dissipation between the sensor and the sample. We also find that there is a second-order term in addition to the linear relationship between the sensor-sample force gradient and the resonance frequency shift of the tuning fork that is significant even for force gradients usually present in atomic force microscopy, which are in the range of tens of N/m.  相似文献   

18.
The existing researches on quartz gyroscope mainly focus on the structure design of the tuning fork, which aim at obtaining a better vibration characterization. However, the fabrication of complicated structure is a challenge for present processes, and the imperfect fabrication process seriously affects the performances of the sensors. In this paper, a novel quartz cross-fork structure micromachined gyroscope is proposed. The sensor has a simple structure in x-y plane of quartz crystal. Unlike other quartz ...  相似文献   

19.
Naber A 《Journal of microscopy》1999,194(PT 2-3):307-310
The dynamic force distance control for scanning near-field optical microscopy on the basis of a tuning fork as piezoelectric force sensor is remarkably sensitive. In order to gain a better understanding of this sensitivity the vibrational properties of the tuning fork are modelled within the framework of two coupled harmonic oscillators. As a result, the effective force constant of the tuning fork at resonance frequency is determined. Furthermore, the influence of the additional mass by the attachment of the near-field probe is investigated.  相似文献   

20.
A. Naber 《Journal of microscopy》1999,194(2-3):307-310
The dynamic force distance control for scanning near-field optical microscopy on the basis of a tuning fork as piezoelectric force sensor is remarkably sensitive. In order to gain a better understanding of this sensitivity the vibrational properties of the tuning fork are modelled within the framework of two coupled harmonic oscillators. As a result, the effective force constant of the tuning fork at resonance frequency is determined. Furthermore, the influence of the additional mass by the attachment of the near-field probe is investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号