首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Hin recombinase catalyzes a site-specific recombination reaction that results in the reversible inversion of a 1-kbp segment of the Salmonella chromosome. The DNA inversion reaction catalyzed by the Salmonella Hin recombinase is a dynamic process proceeding through many intermediate stages, requiring multiple DNA sites and the Fis accessory protein. Biochemical analysis of this reaction has identified intermediate steps in the inversion reaction but has not yet revealed the process by which transition from one step to another occurs. Because transition from one reaction step to another proceeds through interactions between specific amino acids, and between amino acids and DNA bases, it is possible to study these transitions through mutational analysis of the proteins involved. We isolated a large number of mutants in the Hin recombinase that failed to carry out the DNA exchange reaction. We generated genetic tools that allowed the assignment of these mutants to specific transition steps in the recombination reaction. This genetic analysis, combined with further biochemical analysis, allowed us to define contributions by specific amino acids to individual steps in the DNA inversion reaction. Evidence is also presented in support of a model that Fis protein enhances the binding of Hin to the hixR recombination site. These studies identified regions within the Hin recombinase involved in specific transition steps of the reaction and provided new insights into the molecular details of the reaction mechanism.  相似文献   

2.
The beta recombinase, in the presence of a chromatin-associated protein such as Hbsu, catalyzes DNA resolution or DNA inversion on supercoiled substrates containing two directly or inversely oriented six sites. Hbsu stabilizes the formation of the recombination complex (Alonso, J. C., Weise, F., and Rojo, F. (1995) J. Biol. Chem. 270, 2938-2945). In this study we show that resolution by beta recombinase strictly requires supercoiled DNA, but inversion does not. On a substrate with two inversely oriented six sites, beta recombinase catalyzed both resolution and inversion if the DNA was supercoiled but only inversion if the substrate was relaxed or linear. Hbsu was critical for the formation of synaptic complexes; its concentration relative to that of the supercoiled DNA substrate determined whether resolution or inversion products were preferentially formed. The results suggest that the beta recombinase forms unproductive short-lived synaptic complexes between two juxtaposed inversely oriented six sites; the presence of 3 to 13 Hbsu dimers per supercoiled DNA molecule would stabilize a synaptic complex with a relative geometry of the six sites allowing beta recombinase preferentially to achieve resolution. Supercoiling probably helps to overcome an energetic barrier, since resolution does not occur in relaxed DNA. The presence of >30 Hbsu dimers per DNA molecule probably favors the formation of a recombination complex with a different geometry since the reaction is directed preferentially toward DNA inversion.  相似文献   

3.
4.
Supercoiling is an important feature of DNA physiology in vivo. Given the possibility that the reaction of genotoxic molecules with DNA is affected by the alterations in DNA structure and dynamics that accompany superhelical tension, we have investigated the effect of torsional tension on DNA damage produced by five oxidizing agents: gamma-radiation, peroxynitrite, Fe2+/ EDTA/H2O2, Fe2+/H2O2, and Cu2+/H2O2. With positively supercoiled plasmid DNA prepared by a recently developed technique, we compared the quantity of strand breaks produced by the five agents in negatively and positively supercoiled pUC19. It was observed that strand breaks produced by gamma-radiation, peroxynitrite, and Fe2+/EDTA/H2O2 were insensitive to DNA superhelical tension. These results are consistent with a model in which chemicals that generate highly reactive intermediates (e.g., hydroxyl radical), but do not interact directly with DNA, will be relatively insensitive to the changes in DNA structure and dynamics caused by superhelical tension. In the case of Fe2+ and Cu2+, metals that bind to DNA, only Cu2+/H2O2 proved to be sensitive to DNA superhelical tension. Strand breaks produced by Cu2+/H2O2 in the positively supercoiled substrate occurred at lower Cu concentrations than in negatively supercoiled DNA. Furthermore, a sigmoidal Cu2+/H2O2 damage response was observed in the negatively supercoiled substrate but not in positively supercoiled DNA. The results with Cu2+ suggest that the redox activity, DNA binding orientation, or DNA binding affinity of Cu1+ or Cu2+ is sensitive to superhelical tension, while the results with the other oxidizing agents warrant further investigation into the role of supercoiling in base damage.  相似文献   

5.
Recombination by the Flp recombinase of Saccharomyces cerevisiae is known to be inhibited by heterology of the overlap regions of the two recombining DNA targets (FRT sites). We have used topological analysis to show that Flp can promote two rounds of intramolecular recombination between heterologous FRT sites contained within the same supercoiled plasmid. The products are in parental nonrecombinant configuration. Thus, heterology may appear to "block" recombination by rendering the heteroduplex recombinant products unstable, thus favoring a second round of recombination to homoduplex (but parental) products. Hence, homology in the core region is not a requirement for the recombination reaction by Flp but for the formation of recombinant products.  相似文献   

6.
DNA superhelical tension, an important feature of genomic organization, is known to affect the interactions of intercalating molecules with DNA. However, the effect of torsional tension on nonintercalative DNA-binding chemicals has received less attention. We demonstrate here that the enediyne calicheamicin gamma1I, a strand-breaking agent specific to the minor groove, causes approximately 50% more damage in negatively supercoiled plasmid DNA than in DNA with positive superhelicity. Furthermore, we show that the decrease in damage in positively supercoiled DNA is controlled at the level of thiol activation of the drug. Our results suggest that supercoiling may affect both the activity of nonintercalating genotoxins in vivo and the accessibility of glutathione and other small physiologic molecules to DNA-bound chemicals or reactions occurring in the grooves of DNA.  相似文献   

7.
The Hin DNA invertase becomes catalytically activated when assembled in an invertasome complex containing two Fis dimers bound to an enhancer segment. The region of Fis responsible for transactivation of Hin contains a mobile beta-hairpin arm that extends from each dimer subunit. We show here that whereas both Fis dimers must be capable of activating Hin, Fis heterodimers that have only one functional activating beta-arm are sufficient to form catalytically competent invertasomes. Analysis of homodimer and heterodimer mixes of different Hin mutants suggests that Fis must activate each subunit of the two Hin dimers that participate in catalysis. These experiments also indicate that all four Hin subunits must be coordinately activated prior to initiation of the first chemical step of the reaction and that the process of activation is independent of the catalytic steps of recombination. We propose a molecular model for the invertasome structure that is consistent with current information on protein-DNA structures and the topology of the DNA strands within the recombination complex. In this model, a single Fis activation arm could contact amino acids from both Hin subunits at the dimer interface to induce a conformational change that coordinately positions the active sites close to the scissile phosphodiester bonds.  相似文献   

8.
9.
The SfiI endonuclease differs from other type II restriction enzymes by cleaving DNA concertedly at two copies of its recognition site, its optimal activity being with two sites on the same DNA molecule. The nature of this communication event between distant DNA sites was analysed on plasmids with recognition sites for SfiI interspersed with recombination sites for resolvase. These were converted by resolvase to catenanes carrying one SfiI site on each ring. The catenanes were cleaved by SfiI almost as readily as a single ring with two sites, in contrast to the slow reactions on DNA rings with one SfiI site. Interactions between SfiI sites on the same DNA therefore cannot follow the DNA contour and, instead, must stem from their physical proximity. In buffer lacking Mg2+, where SfiI is inactive while resolvase is active, the addition of SfiI to a plasmid with target sites for both proteins blocked recombination by resolvase, due to the restriction enzyme bridging its sites and thus isolating the sites for resolvase into separate loops. The extent of DNA looping by SfiI matched its extent of DNA cleavage in the presence of Mg2+.  相似文献   

10.
We describe the preparation of nuclear extracts from yeast cells synchronised in S-phase that support the aphidicolin-sensitive, semi-conservative replication of primer-free, supercoiled plasmid in vitro. This is monitored by one and two-dimensional gel electrophoresis of replication intermediates that have incorporated [alpha-32P]dATP, by the conversion of methylated template DNA into a hemi-methylated or DpnI-resistant form, and by substitution of dTTP with the heavy derivative BrdUTP, which results in a shift in density corresponding to complete second strand synthesis. We demonstrate dependence on DNA pol delta and the pol alpha/primase complex, and are able to detect putative Okazaki fragments under ATP-limiting conditions. In contrast to the semi-conservative replication of supercoiled plasmid, linear or open-circular templates incorporate labelled nucleotides through repair synthesis that produces no significant density shift on CsCl gradients. Consistent with a true replication reaction we find that semi-conservative replication of plasmid DNA is stimulated in S-phase relative to G1-phase nuclear extracts, and is independent of the recombination-promoting factor Rad52p. Using this novel system we demonstrate that semi-conservative replication, but not polymerase activity per se, requires the activity of the DNA helicase encoded by DNA2.  相似文献   

11.
12.
The Xer site-specific recombination system functions in Escherichia coli to ensure that circular plasmids and chromosomes are in the monomeric state prior to segregation at cell division. Two recombinases, XerC and XerD, bind cooperatively to a recombination site present in the E. coli chromosome and to sites present in natural multicopy plasmids. In addition, recombination at the natural plasmid site cer, present in ColEl, requires the function of two additional accessory proteins, ArgR and PepA. These accessory proteins, along with accessory DNA sequences present in the recombination sites of plasmids are used to ensure that recombination is exclusively intramolecular, converting circular multimers to monomers. Wild-type and mutant recombination proteins have been used to analyse the formation of recombinational synapses and the catalysis of strand exchange in vitro. These experiments demonstrate how the same two recombination proteins can act with different outcomes, depending on the organization of DNA sites at which they act. Moreover, insight into the separate roles of the two recombinases is emerging.  相似文献   

13.
Eukaryotic DNA topoisomerase II was shown to catalyze recombination between circular supercoiled plasmid DNAs in vitro. The results obtained are discussed with regard to the organization of eukaryotic chromosomes in the form of topologically independent domains (loops).  相似文献   

14.
Plasmids currently used for nonviral gene transfer have the disadvantage of carrying a bacterial origin of replication and an antibiotic resistance gene. There is, therefore, a risk of uncontrolled dissemination of the therapeutic gene and the antibiotic resistance gene. Minicircles are new DNA delivery vehicles which do not have such elements and are consequently safer as they exhibit a high level of biological containment. They are obtained in E. coli by att site-specific recombination mediated by the phage lambda integrase. The desired eukaryotic expression cassette, bounded by the lambda attP and attB sites was cloned on a recombinant plasmid. The expression cassette was excised in vivo after thermoinduction of the integrase gene leading to the formation of two supercoiled molecules the minicircle and the starting plasmid lacking the expression cassette. In various cell lines, purified minicircles exhibited a two- to 10-fold higher luciferase reporter gene activity than the unrecombined plasmid. This could be due to either the removal of unnecessary plasmid sequences, which could affect gene expression or the smaller size of mini-circle which may confer better extracellular and intracellular bioavailability and result in improved gene delivery properties.  相似文献   

15.
The Escherichia coli chromosomal origin contains several bindings sites for factor for inversion stimulation (FIS), a protein originally identified to be required for DNA inversion by the Hin and Gin recombinases. The primary FIS binding site is close to two central DnaA boxes that are bound by DnaA protein to initiate chromosomal replication. Because of the close proximity of this FIS site to the two DnaA boxes, we performed in situ footprinting with 1, 10-phenanthroline-copper of complexes formed with FIS and DnaA protein that were separated by native gel electrophoresis. These studies show that the binding of FIS to the primary FIS site did not block the binding of DnaA protein to DnaA boxes R2 and R3. Also, FIS appeared to be bound more stably to oriC than DnaA protein, as deduced by its reduced rate of dissociation from a restriction fragment containing oriC . Under conditions in which FIS was stably bound to the primary FIS site, it did not inhibit oriC plasmid replication in reconstituted replication systems. Inhibition, observed only at high levels of FIS, was due to absorption by FIS binding of the negative superhelicity of the oriC plasmid that is essential for the initiation process.  相似文献   

16.
BACKGROUND: The plasmid R100 encodes the TraI protein, which is required for conjugal DNA transfer. TraI has the activity of site- and strand-specific nicking of the supercoiled plasmid DNA. The molecular mechanism of this specific nicking, which is supposed to be the initiation reaction of DNA transfer, is not understood. RESULTS: We have demonstrated that TraI has the ability to cleave the single-stranded DNA at the same site as the nicking site (nic) in a region, which we here refer to as sbi. The product contained the TraI protein which was covalently linked to the newly generated 5' end of the nicking reaction. Both the cleaving and nicking reactions took place under almost the same conditions and required the presence of the sbi region. DNase I-footprinting analysis revealed that the TraI bound to the single-stranded DNA of the sbi region. TraI did not cleave the double-stranded DNA fragment, but it did cleave the double-stranded DNA with a single-stranded DNA portion in the sbi region. KMnO4 mapping analysis revealed that TraI can melt the sbi region in the supercoiled DNA to generate a single-stranded portion. We have also demonstrated that TraI was able to rejoin the cleaved products. The rejoining reaction required the 5' end of one cleaved product with the TraI covalently attached and the 3' end of the other product containing the sbi region. CONCLUSIONS: Our results demonstrate that the nicking reaction-the initiation reaction of DNA transfer-is actually the cleaving reaction of the single-stranded DNA. TraI, which has both cleaving and rejoining activities, is thought to be involved in the termination of DNA transfer, to give a copy of the conjugative plasmid by joining the 5' end, which is generated by the initiation reaction, with the 3' end, which will be generated upon cleavage of the sbi region appearing after one round of the rolling circle replication of the plasmid.  相似文献   

17.
The Rad51 protein of Saccharomyces cerevisiae is a eukaryotic homolog of the RecA protein, the prototypic DNA strand-exchange protein of Escherichia coli. RAD51 gene function is required for efficient genetic recombination and for DNA double-strand break repair. Recently, we demonstrated that RecA protein has a preferential affinity for GT-rich DNA sequences-several of which exhibit enhanced RecA protein-promoted homologous pairing activity. The fundamental similarity between the RecA and Rad51 proteins suggests that Rad51 might display an analogous bias. Using in vitro selection, here we show that the yeast Rad51 protein shares the same preference for GT-rich sequences as its prokaryotic counterpart. This bias is also manifest as an increased ability of Rad51 protein to promote the invasion of supercoiled DNA by homologous GT-rich single-stranded DNA, an activity not previously described for the eukaryotic pairing protein. We propose that the preferred utilization of GT-rich sequences is a conserved feature among all homologs of RecA protein, and that GT-rich regions are loci for increased genetic exchange in both prokaryotes and eukaryotes.  相似文献   

18.
Xer site-specific recombination at ColE1 cer converts plasmid multimers into monomers, thus ensuring the heritable stability of ColE1. Two related recombinase proteins, XerC and XerD, catalyse the strand exchange reaction at a 30 bp recombination core site. In addition, two accessory proteins, PepA and ArgR, are required for recombination at cer. These two accessory proteins are thought to act at 180 bp of accessory sequences adjacent to the cer recombination core to ensure that recombination only occurs between directly repeated sites on the same molecule. Here, we demonstrate that PepA and ArgR interact directly with cer, forming a complex in which the accessory sequences of two cer sites are interwrapped approximately three times in a right-handed fashion. We present a model for this synaptic complex, and propose that strand exchange can only occur after the formation of this complex.  相似文献   

19.
The structure of the 52-amino acid DNA-binding domain of the prokaryotic Hin recombinase, complexed with a DNA recombination half-site, has been solved by x-ray crystallography at 2.3 angstrom resolution. The Hin domain consists of a three-alpha-helix bundle, with the carboxyl-terminal helix inserted into the major groove of DNA, and two flanking extended polypeptide chains that contact bases in the minor groove. The overall structure displays features resembling both a prototypical bacterial helix-turn-helix and the eukaryotic homeodomain, and in many respects is an intermediate between these two DNA-binding motifs. In addition, a new structural motif is seen: the six-amino acid carboxyl-terminal peptide of the Hin domain runs along the minor groove at the edge of the recombination site, with the peptide backbone facing the floor of the groove and side chains extending away toward the exterior. The x-ray structure provides an almost complete explanation for DNA mutant binding studies in the Hin system and for DNA specificity observed in the Hin-related family of DNA invertases.  相似文献   

20.
FLP recombinase induces a double-reciprocal crossover event between sets of different FLP recognition target (FRT) sites. Therefore, if these sites flank an expression cassette at a given genomic locus, it can be exchanged for another cassette that has been constructed in the analogous was [Schlake & Bode (1994) Biochemistry 33, 12746-12751]. Here we demonstrate that an integrated expression cassette, flanked by a wild type and a mutated site, remains completely stable in the presence of constitutive FLP activity, obviating the need for a timing of this parameter. Therefore the only variable left for optimization is the initial concentration of the exchange plasmid. Since the exchange plasmid lacks a promoter, random integration is not expected to confer resistance to the selection marker, the expression of which requires the acquisition of the SV40 promoter provided at the predetermined integration site. Due to the presence of a luciferase reporter in a specific bicistronic expression cassette, recombination generates bioluminescence upon recombination, indicating the extent of the exchange reaction. This principle is utilized to compare the potential of various cell lines to support the exchange reaction and to adjust the optimum parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号