共查询到19条相似文献,搜索用时 78 毫秒
1.
针对决策树构造中存在的最优属性选择困难、抗噪声能力差等问题,提出了一种新的基于变精度粗糙集模型的决策树构造算法.该算法采用近似分类精度作为节点选择属性的启发函数,与传统基于粗糙集的决策树构造算法相比,该算法构造的决策树结构简单,提高了决策树的泛化能力,同时对噪声也有一定的抑制能力. 相似文献
2.
针对Pawlak粗糙集模型处理噪声信息的局限性,借鉴变精度粗糙集模型的思想,引入多尺度变量,建立单维的多尺度粗糙集模型。通过构造尺度变量s与尺度函数(fs)的变化关系,对噪声数据进行多尺度、多角度的动态分析,提高抑制噪声的能力,根据评价指标不断地优化尺度,获取满足用户要求的决策规则。实例说明了该方法的优点及可行性。 相似文献
3.
在基于粗糙集模型的决策树生成算法中,由于分类的精确性,导致生成算法在对实例进行划分时往往过于细化,无法避免少数特殊实例对决策树造成的不良影响,使得生成的决策树过于庞大,不便于理解,同时也降低了其对未来数据的分类和预测能力。针对上述问题,该文给出一个新的基于粗糙集模型的决策树生成算法,引入了抑制因子。对即将扩张的结点,除了常用的终止条件外,再加入一个终止条件:若样本的抑制因子大于给定的阈值,便不再扩展该结点。有效地避免了划分过细的问题,也不会生成过于庞大的决策树,便于用户理解。 相似文献
4.
5.
基于变精度粗糙集的决策树优化算法研究 总被引:4,自引:2,他引:4
应用变精度粗糙集理论,提出了一种利用新的启发式函数构造决策树的方法。该方法以变精度粗糙集的分类质量的量度作为信息函数,对条件属性进行选择。和ID3算法比较,本方法充分考虑了属性间的依赖性和冗余性,尤其考虑了训练数据中的噪声数据,允许在构造决策树的过程中划入正域的实例类别存在一定的不一致性,可简化生成的决策树,提高决策树的泛化能力。 相似文献
6.
7.
针对ID3算法构造决策树复杂、分类效率不高等问题,本文基于变精度粗糙集模型提出了一种新的决策树构造算法。该算法采用加权分类粗糙度作为节点选择属性的启发函数,与信息增益相比,该标准更能够全面地刻画属性分类的综合贡献能力,计算简单,并且可以消除噪声数据对选择属性和生成叶节点的影响。实验结果证明,本算法构造的决策树在规模与分类效率上均优于ID3算法。 相似文献
8.
本文在应用变精度粗糙集模型构造决策树的研究基础上,提出了具有置信度规则的决策树的构造方法。该方法是对决策树生成方法的一个改进,所构造的决策树具有更强的实用性以及更高的可理解性。本文还针对两个甚至两个以上属性的分类质量量度相等的特殊情形,给出了如何选择较优的属性作为结点的方法。与传统的ID3算法相比,该方法所构造的决策树不仅结构简单,而且更加实用,利于理解。 相似文献
9.
噪声数据降低了多变量决策树的生成效率和模型质量,目前主要采用针对叶节点的剪枝策略来消除噪声数据的影响,而对决策树生成过程中的噪声干扰问题却没有给予关注。为改变这种状况,将基本粗糙集(rough set,RS)理论中相对核的概念推广到变精度粗糙集(variable precision roughset,VPRS)理论中,并利用其进行决策树初始变量选择;将两个等价关系相对泛化的概念推广为两个等价关系多数包含情况下的相对泛化,并利用其进行决策树初始属性检验;进而给出一种能够有效消除噪声数据干扰的多变量决策树构造算法。最后,采用实例验证了算法的有效性。 相似文献
10.
基于粗糙集理论的决策树分类方法 总被引:1,自引:0,他引:1
决策树是数据挖掘中常用的分类方法。本文提出了基于粗糙集的决策树方法,利用粗糙集近似精确度来选择决策树的根节点,分支由分类产生。该方法计算简单,易于理解。本文还提出用悲观剪枝法简化决策树,提高决策树的预测与分类能力。实例说明了本文方法均简单有效。 相似文献
11.
针对静态算法对大数据和增量数据处理不足的问题,构造了基于粗决策树的动态规则提取算法,并将其应用于旋转机械故障诊断中.将粗集与决策树结合,用增量方式实现样本抽取;经过动态约简、决策树构造、规则提取与选择、匹配4个步骤的循环迭代过程,实现了数据的动态规则提取,使得提取的规则具有更高的可信度;同时,将算法应用于旋转机械故障诊断这一动态问题中,验证了算法的有效性;最后,将所提算法分别与静态算法和增量式动态算法进行了效率对比分析,实验结果表明,所提算法能够以最精简的规则获得更多数据隐含信息. 相似文献
12.
基于变精度粗糙集理论提出了具有置信度规则决策树的新的构造方法,该方法采用β-边界域的大小作为选择分类属性的标准,并对叶节点的置信度进行了重新的定义。经实验证明,该方法能有效提高分类效率且更加容易理解。 相似文献
13.
基于粗集和熵的多变量决策树的构造算法 总被引:1,自引:0,他引:1
多变量决策树是一种有效用于分类的数据挖掘方法,构造的关键是根据属性之间的相关性选择合适的属性组合作为节点。针对传统方法中用相对核进行多变量检验中属性选择存在的不足,首先对每个节点包含的属性个数加以限制,然后由重新定义的属性依赖度和基于条件熵的距离函数选择相关的属性组合作为节点,从而提出一种新的构造算法。实例说明,该算法不仅有效降低了树的高度,而且还兼顾了分类的可读性。 相似文献
14.
决策树是一种有效用于分类的数据挖掘方法.在决策树构造算法中,粗集理论的相对核已被应用于解决多变量检验中属性的选择问题.考虑到决策树技术和粗集的优缺点,将二者结合起来,先对每个结点包含的属性个数加以限制,再用属性相关度和De Mantaras距离函数选择相关的属性组合作为属性选择的标准,给出一种新的构造算法.该算法的优点是能有效降低树的高度,而且增强了分类规则的可读性. 相似文献
15.
提出了一种基于粗糙集理论的面向个性化知识的决策规则获取算法。从理论上证明了算法的正确性,给出了面向个性化的知识获取算法的描述。算法的重点在于规则合成的方法和可信度、覆盖度和规则强度计算的方法。最后通过例子说明了算法的有效性和实用性。 相似文献
16.
基于决策分类熵的决策树构造算法及应用 总被引:1,自引:0,他引:1
为了更好地完成金融数据集上的分类挖掘任务,以粗糙集理论为基础提出决策分类熵的概念,进而以属性的决策分类熵为属性分裂度量提出基于决策分类熵的决策树构造算法,并针对过拟合问题提出一种抑制参数来实现树规模的良好控制。实例分析及金融数据集上的实验表明:相比经典的C4.5决策树算法,新算法能够较好地克服其缺点和不足,构建更优的决策树,能够更好地完成分类任务。 相似文献
17.
根据医学图像数据的特性,提出一种基于粗糙集和决策树相结合的数据挖掘新方法。该方法利用粗糙集中基于属性重要性的离散化方法对医学图像特征进行离散化,采用粗糙集对其属性进行约简,得到低维训练数据,再用SLIQ决策树算法产生决策规则。实验表明:将粗糙理论与SLIQ相结合的数据挖掘方法既保留了原始数据的内部特点,同时剔除了与分类无关或关系不大的冗余特征,从而提高了分类的准确率和效率。 相似文献
18.
自动文本分类的效果在很大程度上依赖于属性特征的选择。针对传统基于频率阈值过滤的特征选择方法会导致有效信息丢失,影响分类精度的不足,提出了一种基于粗糙集的文本自动分类算法。该方法对加权后的特征属性进行离散化,建立一个决策表;根据基于依赖度的属性重要度对决策表中条件属性进行适当的筛选;采用基于条件信息熵的启发式算法实现文本属性特征的约简。实验结果表明,该方法能约简大量冗余的特征属性,在不降低分类精度的同时,提高文本分类的运行效率。 相似文献
19.
提出了一种基于类别特征矩阵的决策树算法。该算法以决策表的核属性为起点,充分考虑了可辨识矩阵的特性和单个属性的重要性,利用类别特征矩阵对决策表实现最简化决策表的确定和决策规则的挖掘,最后实现最简规则的决策树生成。通过应用实例比较分析,证明该算法能生成最小化决策树,并且决策树生成规则切合实际。 相似文献