共查询到20条相似文献,搜索用时 67 毫秒
1.
2.
近年来,数据流分类问题已经逐渐成为数据挖掘领域的一个研究热点,然而传统的数据流分类算法大多只能处理数据项已知并且为精确值的数据流,无法有效地应用于现实应用中普遍存在的不确定数据流。为建立适应数据不确定性的分类模型,提高不确定数据流分类准确率,提出一种针对不确定数据流的集成分类算法,该算法将不确定数据用区间及其概率分布函数表示,用C4.5决策树分类方法和朴素贝叶斯分类方法训练基分类器,在合理处理数据流中不确定性的同时,还能有效解决数据流中隐含的概念漂移问题。实验结果表明,所提算法在处理不确定数据流的分类时具有较好的鲁棒性,并且具有较高的分类准确率。 相似文献
3.
详细介绍了国内外集成分类算法,对集成分类算法的两个部分(基分类器组合和动态更新集成模型)进行了详细综述,明确区分不同集成算法的优缺点,对比算法和实验数据集。并且提出进一步的研究方向和考虑的解决办法。 相似文献
4.
5.
针对大数据环境下分类精度不高的问题,提出了一种面向分布式数据流的集成分类模型.首先,使用微簇模式减少局部节点向中心节点传输的数据量,降低通信代价;然后,使用样本重构算法生成全局分类器的训练样本;最后,提出一种面向漂移数据流的集成分类模型,采用动态分类器和稳定分类器的加权组合策略,使用混合标记策略标记最具代表性的样本以更... 相似文献
6.
目前关于概念漂移数据流的分类研究已经取得了许多成果,但大部分没有充分考虑到数据流中概念重复出现的情况,这将耗费大量的计算和内存资源,增加了分类错误的可能性。为此,基于概念的重复性提出了一种数据流集成分类算法,该算法运用集成分类思想处理数据流中的概念漂移,但在学习过程中不会将暂时失效的概念及对应基分类器删除,而是把它们的基本信息存储起来,方便以后调用,并可根据概念间的转换关系预测即将到来的概念,在提高分类精度的同时又提高了时间效率。实验结果验证了算法的有效性。 相似文献
7.
挖掘带有概念漂移的数据流对于许多实时决策是十分重要的.本文使用统计学理论估计某一确定模型在最新概念上的真实错误率的置信区间,在一定概率保证下检测数据流中是否发生了概念漂移,并将此方法和KMM(核平均匹配)算法引入集成分类器框架中,提出一种数据流分类的新算法WSEC.在仿真和真实数据流上的试验结果表明该算法是有效的. 相似文献
8.
面向高速数据流的集成分类器算法 总被引:1,自引:1,他引:0
数据流挖掘要求算法在占用少量内存空间的前提下快速地处理数据并且自适应概念漂移,据此提出一种面向高速数据流的集成分类器算法。该算法将原始数据流沿着时间轴划分为若干数据块后,在各个数据块上计算所有类别的中心点和对应的子空间;此后将各个数据块上每个类别的中心点和对应的子空间集成作为分类模型,并利用统计理论的相关知识检测概念漂移,动态地调整模型。实验结果表明,该方法能够在自适应数据流概念漂移的前提下对数据流进行快速的分类,并得到较好的分类效果。 相似文献
9.
10.
杨彬彬 《计算机工程与设计》2014,(10)
为有效解决概念漂移数据流分类问题,提出一种基于混合集成学习的概念漂移数据流分类方法。考虑数据分布特性与概念漂移速率这两个因素,将概念漂移的成因考虑到模型的构建中。采用混合集成学习框架,根据贝叶斯分类错误率来检测概念漂移,通过动态调整滑动窗口,实现不同类型概念漂移的自动识别。实验结果表明,对于不同类型概念漂移数据流的识别问题,该算法在抗噪和漂移检测方面均表现出良好的性能。 相似文献
11.
现有数据流分类算法大多使用有监督学习,而标记高速数据流上的样本需要很大的代价,因此缺乏实用性.针对以上问题,提出了一种低代价的数据流分类算法2SDC.新算法利用少量已标记类别的样本和大量未标记样本来训练和更新分类模型,并且动态监测数据流上可能发生的概念漂移.真实数据流上的实验表明,2SDC算法不仅具有和当前有监督学习分类算法相当的分类精度,并且能够自适应数据流上的概念漂移. 相似文献
12.
13.
数据流分类是数据挖掘中最重要的任务之一,而数据流的概念漂移特性给分类算法带来了巨大的挑战.基于极限学习机算法进行优化是解决数据流分类问题的一个热门方向,但目前大多数算法都采用提前指定模型参数的方式进行学习,这种做法使得分类模型只能在特定的数据集上才能发挥较好的性能.针对这一问题,提出了一种简单有效的处理概念漂移的算法——自适应在线顺序极限学习机分类算法.算法通过引入自适应模型复杂度机制,从而具有更好的分类性能.然后通过引入自适应遗忘因子与概念漂移检测机制,能够根据动态变化的数据流进行自适应学习,从而可以更好地适应概念漂移.进一步还引入异常点检测机制,避免分类决策边界被异常点破坏.仿真实验表明,所提出算法比同类算法具有更好的稳定性、分类准确性以及概念漂移适应能力.此外,还通过消融实验证实了算法所引入3个机制的有效性. 相似文献
14.
互联网环境日新月异,使得网络数据流中存在概念漂移,对数据流的分类也由传统的静态分类变为动态分类,而如何对概念漂移进行检测是动态分类的关键.本文提出一种基于概念漂移检测的网络数据流自适应分类算法,通过比较滑动窗口中数据与历史数据的分布差异来检测概念漂移,然后将窗口中数据过采样来减少样本间的不均衡性,最后将处理后的数据集输... 相似文献
15.
微博、脸书等社交网络平台涌现的短文本数据流具有海量、高维稀疏、快速可变等特性,使得短文本数据流分类面临着巨大挑战。已有的短文本数据流分类方法难以有效地解决特征高维稀疏问题,并且在处理海量数据流时时间代价较高。基于此,提出一种基于Spark的分布式快速短文本数据流分类方法。一方面,利用外部语料库构建Word2vec词向量模型解决了短文本的高维稀疏问题,并构建扩展词向量库以适应文本的快速可变性,提出一种LR分类器集成模型用于短文本数据流分类,该分类器使用一种FTRL方法实现模型参数的在线更新,并引入时间因子加权机制以适应概念漂移环境;另一方面,所提方法的使用分布式处理提高了海量短文本数据流的处理效率。在3个真实短文本数据流上的实验表明:所提方法在提高分类精度的同时,降低了时间消耗。 相似文献
16.
数据流子空间聚类的主要目的是在合理的时间段内准确找到数据流特征子空间中的聚类.现有的数据流子空间聚类算法受参数影响较大,通常要求预先给出聚类数目或特征子空间,且聚类结果不能及时反映数据流的变化情况.针对以上缺陷,提出一种新的数据流子空间聚类算法SC-RP,SC-RP无需预先给出聚类数目或特征子空间,对孤立点不敏感,可实现快速聚类,通过区域树结构记录数据流的变化并及时更新统计信息,进而根据数据流的变化调整聚类结果.通过在真实数据集与仿真数据集上的实验,证明了SC-RP在聚类精度和速度上优于现有的数据流子空间聚类算法,且对聚类数目及数据维度均具有良好的伸缩性. 相似文献
17.
动态非平衡数据分类是在线学习和类不平衡学习领域重要的研究问题,用于处理类分布非常倾斜的数据流.这类问题在实际场景中普遍存在,如实时控制监控系统的故障诊断和计算机网络中的入侵检测等.由于动态数据流中存在概念漂移现象和不平衡问题,因此数据流分类算法既要处理概念漂移,又要解决类不平衡问题.针对以上问题,提出了在检测概念漂移的... 相似文献
18.
当前已有的数据流分类模型都需要大量已标记样本来进行训练,但在实际应用中,对大量样本标记的成本相对较高。针对此问题,提出了一种基于半监督学习的数据流混合集成分类算法SMEClass,选用混合模式来组织基础分类器,用K个决策树分类器投票表决为未标记数据添加标记,以提高数据类标的置信度,增强集成分类器的准确度,同时加入一个贝叶斯分类器来有效减少标记过程中产生的噪音数据。实验结果显示,SMEClass算法与最新基于半监督学习的集成分类算法相比,其准确率有所提高,在运行时间和抗噪能力方面有明显优势。 相似文献
19.
高维数据流聚类是数据挖掘领域中的研究热点。由于数据流具有数据量大、快速变化、高维性等特点,许多聚类算法不能取得较好的聚类质量。提出了高维数据流的自适应子空间聚类算法SAStream。该算法改进了HPStream中的微簇结构并定义了候选簇,只在相应的子空间内计算新来数据点到候选簇质心的距离,减少了聚类时被检查微簇的数目,将形成的微簇存储在金字塔时间框架中,使用时间衰减函数删除过期的微簇;当数据流量大时,根据监测的系统资源使用情况自动调整界限半径和簇选择因子,从而调节聚类的粒度。实验结果表明,该算法具有良好的聚类质量和快速的数据处理能力。 相似文献
20.
数据流分类是数据挖掘领域的重要研究任务之一,已有的数据流分类算法大多是在有标记数据集上进行训练,而实际应用领域数据流中有标记的数据数量极少。为解决这一问题,可通过人工标注的方式获取标记数据,但人工标注昂贵且耗时。考虑到未标记数据的数量极大且隐含大量信息,因此在保证精度的前提下,为利用这些未标记数据的信息,本文提出了一种基于Tri-training的数据流集成分类算法。该算法采用滑动窗口机制将数据流分块,在前k块含有未标记数据和标记数据的数据集上使用Tri-training训练基分类器,通过迭代的加权投票方式不断更新分类器直到所有未标记数据都被打上标记,并利用k个Tri-training集成模型对第k+1块数据进行预测,丢弃分类错误率高的分类器并在当前数据块上重建新分类器从而更新当前模型。在10个UCI数据集上的实验结果表明:与经典算法相比,本文提出的算法在含80%未标记数据的数据流上的分类精度有显著提高。 相似文献