共查询到18条相似文献,搜索用时 62 毫秒
1.
中文文本情感分析研究综述 总被引:3,自引:0,他引:3
对中文文本情感分析的研究进行了综述。将情感分类划分为信息抽取和情感识别两类任务,并分别介绍了各自的研究进展;总结了情感分析的应用现状,最后提出了存在的问题及不足。 相似文献
2.
3.
薛益定 《电脑编程技巧与维护》2016,(5):22-24
近年来,随着互联网在中国的普及,网络上大量出现带有主观性的文本,如用户在博客、微博、等社交网络发表的评论,这些评论信息包含大量情感信息和主观观点.有效挖掘此类文本的信息对于电子商务、信息预测,舆情监控有着重要实用价值.当前,情感分析已经成为自然语言处理学术界的研究热点. 相似文献
4.
情感信息抽取是情感分析中的一个重要子任务。虽然该任务已经开展有一段时间,但是面向中文文本的情感信息抽取任务研究才刚刚起步。目前中文文本的情感信息抽取面临的首要困难在于现有的相关中文语料库还非常有限。为了更好开展中文文本的情感信息抽取研究,该文重点研究了中文语料标注体系,构建一个规模较大、标注类型丰富的中文情感信息抽取语料库。除了常见语料库标注的情感倾向性、评价对象、情感词等信息外,重点标注了评价对象的省略、无情感词情感句表达及极性转移等情况。由语料信息统计可知,该文所指出的特殊现象(例如,评价对象的省略)在中文情感表达中是非常普遍的,开展这方面的研究很有必要。该文所构建的中文文本语料库将为中文情感信息抽取任务提供语料基础。 相似文献
5.
主要针对文本情感倾向性分析近年来的研究进行总结。首先介绍主客观文本分析的内容,接着从词语级、短语级、句子级、篇章级,介绍了文本情感倾向分析近些年的一些技术和研究,对其各自的优缺点进行概括。最后对文本情感倾向性分析进行总结,提出对未来研究的想法。 相似文献
6.
近年来随着计算机、人工智能、心理学等学科交叉领域的不断延伸,情感分析引起了很多研究人员的兴趣。情感分析主要是对主观性文本进行挖掘与分析,从中获取有价值的信息。本文针对中文文本情感分析的研究现状与进展进行总结。首先介绍文本情感分析的内容,并按粒度层次,从词语级、语句级介绍相关的技术,分析了近年来的一些研究进展。接着介绍了中文文本情感分析的方法,最后总结了中文文本情感分析的研究难点与未来的研究方向。 相似文献
7.
主要针对文本情感倾向性分析近年来的研究进行总结。首先介绍主客观文本分析的内容,接着从词语级、短语级、句子级、篇章级,介绍了文本情感倾向分析近些年的一些技术和研究,对其各自的优缺点进行概括。最后对文本情感倾向性分析进行总结,提出对未来研究的想法。 相似文献
8.
《计算机应用与软件》2013,(3)
随着微博的风靡,与之相关的研究得到学术界和工商界的广泛关注。针对中文微博情感分析的研究进行综述。将中文微博文本情感分析分为三类任务:文本预处理、情感信息抽取和情感分类,对各自的研究方法和进展进行总结。其中情感信息抽取分为情感词、主题和关系的抽取,将微博主观文本情感分类方法归结为基于语义词典的情感计算和基于机器学习的情感分类。此外,从微博网站数据构成的角度出发,对情感分析做了延伸分析。最后总结微博情感分析的研究现状,并提出今后的研究方向。 相似文献
9.
10.
随着互联网的发展,社交网络、电子商务等已经成为人们关注的焦点,对社交网络的文本进行情感倾向性分析和挖掘变得越来越重要。该文针对网络上的中文文本,提出一种基于文本纹理特征的情感倾向性分类方法。通过测试多种文本纹理特征对文本情感倾向性的影响,成功将文本纹理特征融入情感分类中。通过计算各类特征与文本的情感倾向性的相关度,对特征进行降维。相对于基于词频的情感倾向性分类方法,查准率平均提高了10%左右。 相似文献
11.
针对传统卷积神经网络(CNN)缺乏句子体系特征的表示,以及传统双向门限循环神经网络(BiGRU)缺乏提取深层次特征能力。以中文文本为研究对象,在字符级词向量的基础上提出双通道的CNN-BiGRU复合网络,同时引入注意力机制的模型进行情感分析。首先,在单通道上利用CNN提取深层次短语特征,利用BiGRU提取全局特征的能力深度学习短语体系特征,从而得到句子体系的特征表示;再通过增加注意力层进行有效特征筛选;最后,采用双通道结构的复合网络,丰富了特征信息,加强了模型的特征学习能力。在数据集上进行多组对比实验,该方法取得92.73%的◢F◣1值结果优于对照组,说明了提出的模型能有效地提高文本分类的准确率。同时在单句测试上量化出模型优势,且实现了模型的实际应用能力。 相似文献
12.
13.
传统卷积神经网络(CNN)中同层神经元之间信息不能互传,无法充分利用同一层次上的特征信息,缺乏句子体系特征的表示,从而限制了模型的特征学习能力,影响文本分类效果。针对这个问题,提出基于CNN-BiGRU联合网络引入注意力机制的模型,采用CNN-BiGRU联合网络进行特征学习。首先利用CNN提取深层次短语特征,然后利用双向门限循环神经网络(BiGRU)进行序列化信息学习以得到句子体系的特征和加强CNN池化层特征的联系,最后通过增加注意力机制对隐藏状态加权计算以完成有效特征筛选。在数据集上进行的多组对比实验结果表明,该方法取得了91.93%的F1值,有效地提高了文本分类的准确率,时间代价小,具有很好的应用能力。 相似文献
14.
The Chinese pronunciation system offers two characteristics that distinguish it from other languages: deep phonemic orthography and intonation variations. In this paper, we hypothesize that these two important properties can play a major role in Chinese sentiment analysis. In particular, we propose two effective features to encode phonetic information and, hence, fuse it with textual information. With this hypothesis, we propose Disambiguate Intonation for Sentiment Analysis (DISA), a network that we develop based on the principles of reinforcement learning. DISA disambiguates intonations for each Chinese character (pinyin) and, hence, learns precise phonetic representations. We also fuse phonetic features with textual and visual features to further improve performance. Experimental results on five different Chinese sentiment analysis datasets show that the inclusion of phonetic features significantly and consistently improves the performance of textual and visual representations and surpasses the state-of-the-art Chinese character-level representations. 相似文献
15.
针对中文数据的特殊性导致判别时容易产生噪声信息,使用传统卷积神经网络(CNN)无法深度挖掘情感特征信息等问题,提出了一种结合情感词典的双输入通道门控卷积神经网络(DC-GCNN-SL)模型。首先,使用情感词典的词语情感分数对句子中的词语进行标记,从而使网络获取情感先验知识,并在训练过程中有效地去除了输入句子的噪声信息;然后,在捕获句子深度情感特征时,提出了基于GTRU的门控机制,并通过两个输入通道的文本卷积运算实现两种特征的融合,控制信息传递,有效地得到了更丰富的隐藏信息;最后,通过softmax函数输出文本情感极性。在酒店评论数据集、外卖评论数据集和商品评论数据集上进行了实验。实验结果表明,与文本情感分析的其他模型相比,所提模型具有更好的准确率、精确率、召回率和F1值,能够有效地获取句子的情感特征。 相似文献
16.
目前情感分析模型通常使用word2vec、GloVe等方法生成静态词向量,并且传统的卷积或循环深度模型无法完整地关注上下文,提取特征不充分,影响情感判断.针对上述问题,提出基于ELMo(embedding from lan-guage model)和双向自注意力网络(bidirectional self-attention network,Bi-SAN)的中文文本情感分析模型.首先通过ELMo语言模型训练得到融合词语本身和上下文信息的词向量,解决了一词多义的问题;同时使用预训练的skip-gram算法代替随机初始化的ELMo模型的嵌入层,提高模型的收敛速度;之后使用Bi-SAN提取特征,由于自注意力机制,Bi-SAN可以完整地关注每个词的上下文,提取特征更为全面.同现有的多个情感分析模型对比,该模型在酒店评论数据集上和NLPCC2014 task2中文数据集取得了更高的F1值,验证了模型的有效性. 相似文献
17.
随着Internet的迅猛发展,人们对事件的立场、观点和看法的文本信息每天都会在网上出现,对于这些评论,仅靠人工进行跟踪和分析显然是行不通的,人们开始关注并研究评论文本的主观性情感倾向分析。文本情感分类中,分类器的设计是其中最重要的一个环节。文本评论往往是针对某一个特定领域的产品,评论语句一般都是短短几句,并且词汇量小特征词的交叉比较多,在这种情况下,与那些基于统计方法的分类器比较,基于规则的分类器更具优越性。提出了一种基于粒运算的方法,通过建立粒网络生成分类规则,从而得到评论文本的情感倾向分类。 相似文献
18.
朱俭 《计算机工程与应用》2014,50(8):211-214
文本情感分类是指通过挖掘和分析文本中的观点、意见和看法等主观信息,对文本的情感倾向做出类别判断。基于集成情感成员模型提出一种文本情感分析方法。把基于改进的神经网络、基于语义特征和基于条件随机场的三个情感分类模型作为成员模型集成在一起。集成后的模型能够涵盖不同的情感特征,从而克服了传统集成学习中仅关注成员模型处理结果的不足。以公开语料进行实验,集成模型融合了多个成员模型的优势,分类正确率达到了88.2%,远高于任一成员模型的效果。 相似文献