共查询到18条相似文献,搜索用时 83 毫秒
1.
2.
提出网格相对密度的概念和边界点提取技术,在此基础上给出了一种多密度聚类算法。该算法使用网格相对密度识别具有不同密度聚簇的相对高密度网格单元,聚类时从相对高密度网格单元开始逐步扩展生成聚簇。实验结果表明,算法能有效地识别不同形状、不同密度的聚簇并对噪声数据不敏感,具有聚类精度高等优点。 相似文献
3.
4.
5.
6.
基于扩展和网格的多密度聚类算法 总被引:6,自引:1,他引:6
提出了网格密度可达的聚类概念和边界处理技术,并在此基础上提出一种基于扩展的多密度网格聚类算法。该算法使用网格技术提高聚类的速度,使用边界处理技术提高聚类的精度,每次聚类均从最高的密度单元开始逐步向周围扩展形成聚类.实验结果表明,该算法能有效地对多密度数据集和均匀密度数据集进行聚类,具有聚类精度高等优点. 相似文献
7.
8.
密度峰值聚类(DPC)将数据样本点的局部密度和相对距离进行结合,能对任意形状数据集进行聚类处理,但密度峰值聚类算法存在主观选择截断距离、简单分配策略和较高时间复杂度等问题。为此,提出了一种基于网格近邻优化的密度峰值聚类算法(KG-DPC算法)。首先对数据空间进行网格化,减少了样本数据点之间距离的计算量;在计算局部密度时不仅考虑了网格自身的密度值,而且考虑了周围k个近邻的网格密度值,降低了主观选择截断距离对聚类结果的影响,提高了聚类准确率,设定网格密度阈值,保证了聚类结果的稳定性。通过实验结果表明,KG-DPC算法比DBSCAN、DPC和SDPC算法在聚类准确率上有很大提升,在聚类平均消耗时间上DPC、SNN-DPC和DPC-NN算法分别降低38%、44%和44%。在保证基本聚类准确率的基础上,KG-DPC算法在聚类效率上有特定优势。 相似文献
9.
网格密度峰值聚类在兼顾密度峰值聚类算法可识别任意形状类簇的基础上,通过数据集的网格化简化整体计算量,成为当前备受关注的聚类方法.针对大规模数据,如何进一步区分稠密与稀疏网格,减少网格密度峰值聚类中参与计算的非空网格代表点的数量是解决“网格灾难”的关键.结合以网格密度为变量的概率密度分布呈现出类Zipf分布的特点,提出一种基于Zipf分布的网格密度峰值聚类算法.首先计算所有非空网格的密度并映射为Zipf分布,根据对应的Zipf分布筛选出稠密中心网格和稀疏边缘网格;然后仅对稠密中心网格进行密度峰值聚类,在自适应确定潜在聚类中心的同时减少欧氏距离的计算量,降低算法复杂度;最后通过对稀疏边缘网格的处理,进一步优化类簇边界并提高聚类精度.人工数据集和UCI数据集下的实验结果表明,所提出算法对大规模、类簇交叉数据的聚类具有明显优势,能够在保证聚类精度的同时降低时间复杂度. 相似文献
10.
CFSFDP是基于密度的新型聚类算法,可聚类非球形数据集,具有聚类速度快、实现简单等优点。然而该算法在指定全局密度阈值dc时未考虑数据空间分布特性,导致聚类质量下降,且无法对多密度峰值的数据集准确聚类。针对以上缺点,提出基于网格分区的CFSFDP(简称GbCFSFDP)聚类算法。该算法利用网格分区方法将数据集进行分区,并对各分区进行局部聚类,避免使用全局dc,然后进行子类合并,实现对数据密度与类间距分布不均匀及多密度峰值的数据集准确聚类。两个典型数据集的仿真实验表明,GbCFSFDP算法比CFSFDP算法具有更加精确的聚类效果。 相似文献
11.
针对基于网格的聚类算法存在簇边缘网格中包含噪声点、利用网格相对密度差进行网格合并时不能区分密度均匀变化的网格等问题。提出一种利用区域划分的多密度快速聚类算法MFCBR。算法把数据空间划分成密度不同的网格,利用网格索引表和网格中心密度差合并网格形成簇,然后分别计算每个簇的边界网格质心、边界网格和最近簇网格中心位置,利用三者之间的关系来排除簇边界网格数据中包含的噪声点。实验表明,该算法在降低噪声数据对聚类干扰的同时,且对密度均匀变化的多密度数据集也有较优的处理效果。 相似文献
12.
针对传统密度网格算法在聚类中自动获取密度阈值不够精确的问题,提出了一种基于密度网格参数自适应的数据流聚类算法A-Stream。通过引入"双密度阈值",并以平均值作为密度阈值,对传统聚类算法进行了改进,解决了算法不能获取精确值的问题。实验结果表明,A-Stream算法不仅保留了传统密度网格算法的高效性,而且较大程度上提高了聚类精度。 相似文献
13.
14.
古建筑图像三维重建中图像特征可靠匹配是影响重建效果的一个关键问题.为提高古建筑图像特征的匹配性能,提出了一种基于网格多密度聚类的特征匹配方法.该方法首先采用SIFT算子获取图像特征点;其次对图像进行网格划分,依据网格单元特征点密度确定图像锚单元、邻居单元、边界单元;然后依据局部区域密度相似性确定图像簇;最后对相似簇中的特征点依据最近邻距离比准则进行匹配.在中国古代建筑三维重建数据集和141幅山西晋祠古建筑图像上进行了实验,验证了算法的有效性. 相似文献
15.
16.
17.
18.
针对网页噪音和网页非结构化信息抽取复杂度高的问题,提出一种基于标签路径聚类的文本信息抽取算法。对网页噪音进行预处理,根据网页的文档对象模型树结构进行标签路径聚类,通过自动训练的阈值和网页分割算法快速判定网页的关键部分,根据数据块中的嵌套结构获取网页文本抽取模板。对不同类型网站的实验结果表明,该算法运行速度快、准确度高。 相似文献