首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ZnO and Ni films were used as the diffusion barrier layer between Al and n-type μc-Si:H for the hydrogenated amorphous silicon (a-Si:H) solar cells on polyimide (PI) substrate. The electrical, optical and uniformity properties of ZnO or Ni film influence strongly the performance and uniformity of solar cells. The uniformity of the solar cells with ZnO diffusion barrier layer degraded with the increasing thickness of ZnO film. The uniformity of solar cells with Ni diffusion barrier layer was more than 90%, which was generally better than those with ZnO film. A power-to-weight ratio of 200 W/kg was obtained for a-Si:H thin-film solar cell on PI substrate with a size of 14.8 cm2.  相似文献   

2.
We fabricated hydrogenated microcrystalline silicon (μc-Si:H) solar cells on SnO2 coated glass using a seed layer insertion technique. Since rich hydrogen atoms from the μc-Si:H deposition process degrade the SnO2 layer, we applied p-type hydrogenated amorphous silicon (p-a-Si:H) as a window layer. To grow the μc-Si:H layer on the p-a-Si:H window layer, we developed a seed layer insertion method. We inserted the seed layer between the p-a-Si:H layer and intrinsic bulk μc-Si:H. This seed layer consists of a thin hydrogen diluted silicon buffer layer and a naturally hydrogen profiled layer. We compared the characteristics of solar cells with and without the seed layer. When the seed layer was not applied, the fabricated cell showed the characteristics of a-Si:H solar cell whose spectral response was in a range of 400-800 nm. Using the seed layer, we achieved a μc-Si:H solar cell with performance of Voc=0.535 V, Jsc=16.0 mA/cm2, FF=0.667, and conversion efficiency=5.7% without any back reflector. The spectral response was in the range of 400-1100 nm. Also, the fabricated device has little substrate dependence, because a-Si:H has weaker substrate selectivity than μc-Si:H.  相似文献   

3.
P-i-n type hydrogenated amorphous silicon (a-Si:H) solar cells were deposited by the radio-frequency plasma-enhanced chemical vapor deposition (RF-PECVD) process at a low substrate temperature of 125 °C, which is compatible with low-cost poly (ethylene terephthalate) (PET) plastic substrates. Wide band gap (Eopt>1.88 eV) intrinsic a-Si:H films were achieved before the onset of the microcrystalline regime by changing the hydrogen dilution ratios. On the other hand, the structural, optical and electrical properties of p-type hydrogenated amorphous silicon carbide (p-a-SiC:H) window layers have been optimized at 125 °C. High quality p-a-SiC:H film with high optical band gap (E04=2.02 eV) and high conductivity (σd=1.0×10−7 S/cm) was deposited at ‘low-power regime’ under low silane flow rates and high H2 dilution conditions. With the combination of wide band gap p-a-SiC:H window layers and intrinsic a-Si:H layers, a high Voc of 1.01 V (efficiency=5.51%, FF=0.72, Jsc=7.58 mA/cm2) was obtained for single junction a-Si:H p-i-n solar cell at a low temperature of 125 °C. Finally, flexible a-Si:H solar cell on PET substrate with efficiency of 4.60% (Voc=0.98 V, FF=0.69, Jsc=6.82 mA/cm2) was obtained.  相似文献   

4.
We have developed thin film silicon double-junction solar cells by using micromorph structure. Wide bandgap hydrogenated amorphous silicon oxide (a-SiO:H) film was used as an absorber layer of top cell in order to obtain solar cells with high open circuit voltage (Voc), which are attractive for the use in high temperature environment. All p, i and n layers were deposited on transparent conductive oxide (TCO) coated glass substrate by a 60 MHz-very-high-frequency plasma enhanced chemical vapor deposition (VHF-PECVD) technique. The p-i-n-p-i-n double-junction solar cells were fabricated by varying the CO2 and H2 flow rate of i top layer in order to obtain the wide bandgap with good quality material, which deposited near the phase boundary between a-SiO:H and hydrogenated microcrystalline silicon oxide (μc-SiO:H), where the high Voc can be expected. The typical a-SiO:H/μc-Si:H solar cell showed the highest initial cell efficiency of 10.5%. The temperature coefficient (TC) of solar cells indicated that the values of TC for conversion efficiency ) of the double-junction solar cells were inversely proportional to the initial Voc, which corresponds to the bandgap of the top cells. The TC for η of typical a-SiO:H/μc-Si:H was −0.32%/ °C, lower than the value of conventional a-Si:H/μc-Si:H solar cell. Both the a-SiO:H/μc-Si:H solar cell and the conventional solar cell showed the same light induced degradation ratio of about 20%. We concluded that the solar cells using wide bandgap a-SiO:H film in the top cells are promising for the use in high temperature regions.  相似文献   

5.
A new approach to reduce phosphorous contamination in the intrinsic layer during the deposition of amorphous silicon (a-Si:H) n-i-p solar cells prepared in single-chamber reactors is presented. This novel process consists of a hydrogen etching plasma performed after the n-layer deposition, which prevents a recycling of phosphorous from the reactor walls when exposed to a hydrogen-rich plasma during the subsequent i-layer deposition. The implemented process reduces the phosphorous cross-contamination in the i-layer, as corroborated by secondary ion mass spectroscopy measurements. Furthermore, the end of the etching process can be easily monitored by measuring the DC bias voltage at the powered electrode. By applying this process, we were able to improve the fill factor from 70% up to 75%, without degradation in the other parameters of the cell, neither in the initial nor in the stabilized state. Finally, by implementing this process in a-Si:H/a-Si:H tandem solar cells we obtained an initial efficiency of 10.3% (Voc=1.76 V, FF=74.5%, Jsc=7.8 mA cm−2); light soaking test resulted in a stabilized efficiency of 8.5%.  相似文献   

6.
A new type of solar cell with structure glass/ITO/CdS/PbS/conductive graphite was constructed and studied. Both window (CdS) and absorption (PbS) layers were deposited by means of the chemical bath deposition (CBD) technique. The maximum temperature employed during the solar cell processing was 70 °C and it did not include any post-treatment. In case of the CdS window layer, complexing agents alternative to ammonia were employed in the CBD process and their effects on the CdS films properties were studied. The solar cells are photosensitive in a large spectral range (all visible and near infrared regions); the cell with the area of 0.16 cm2 without any special treatment has shown the values of open-circuit voltage Voc of 290 mV and short circuit current Jsc of 14 mA/cm2 with the efficiency η=1.63% (fill factor FF is 0.36) under illumination intensity of 900 W/m2. It was found that the CBD-made PbS layer has a certain degree of porosity, which favorably affects its applicability in solar cell construction. The possible ways of device optimization, and in particular, the effect of the PbS grain size on its performance are discussed.  相似文献   

7.
This article reports for the first time in the literature, a dye sensitized solar cells with 1.21% efficiency (Voc=0.56 V, Jsc=6.70 mA/cm2 and F.F.=0.33) on paper substrates. The current dye sensitized solar cell technology is based on fluorine doped SnO2 (FTO) coated glass substrates. The problem with the glass substrate is its rigidity and heavy weight. Making DSSCs on paper opens the door for both photovoltaic and paper industries. The potential of using mature paper making and coating technologies will greatly reduce the current PV cost. Paper substrate based DSSCs not only offer the advantages of flexibility, portability and lightweight but also provide the opportunities for easy implantation to textile. In this study, a low temperature process is developed to coat uniform nickel on paper substrate as the metal contact to replace the traditional expensive FTO. The Ni paper showed excellent conductivity of 8-10 Ω/□. It is found that the control of metal oxide electrode morphology is critical to solar cell performance. The TiO2 film has the tendency to crack on Ni coated paper, which resulted in the shunt of the device and no solar cell efficiency was obtained. ZnO film on the other hand had good morphology tolerance on Ni coated paper and yielded solar cell efficiency of 1.21% (Voc=0.56 V, Jsc=6.70 mA/cm2 and F.F.=0.33) under AM 1.5 (activation area is 0.16 cm2). The control sample of ZnO solar cell on FTO glasses has the efficiency of 2.66% (Voc=0.64 V, Jsc=9.97 mA/cm2 and F.F.=0.42).  相似文献   

8.
Surface wet etching is applied to the ZnO:Ga (GZO) back contact in μc-Si thin film solar cells. GZO transparency increases with increasing deposition substrate temperature. Texturing enhances reflective scattering, with etching around 5-6 s producing the best scattering, whereas etching around 5 s produces the best fabricated solar cells. Etching beyond these times produces suboptimal performance related to excessive erosion of the GZO. The best μc-Si solar cell achieves FF=68%, VOC=471 mV and JSC=21.48 mA/cm2 (η=6.88%). Improvement is attributed to enhanced texture-induced scattering of light reflected back into the solar cell, increasing the efficiency of our lab-made single μc-Si solar cells from 6.54% to 6.88%. Improved external quantum efficiency is seen primarily in the longer wavelengths, i.e. 600-1100 nm. However, variation of the fabrication conditions offers opportunity for significant tuning of the optical absorption spectrum.  相似文献   

9.
Arylenevinylene-co-pyrrolenevinylene (AVPV) is a promising candidate amongst the group of new photovoltaic materials. It is a low band gap organic material with a band gap of 1.84 eV and absorbs sunlight in 300-700 nm range. In this paper, we demonstrate the photovoltaic effect in an organic bulk heterojunction photovoltaic device based on the blend of AVPV as an electron donor and [6,6]-phenyl-C61 butyric acid methyl ester (PCBM) as the acceptor. The short-circuit current density of the device was of the order of 0.55 μA cm−2 with an open-circuit voltage of 0.7 V, measured under 1 sun illumination of AM 1.5 through a calibrated solar simulator. Fill factor was estimated to be 12%. Further, the tests conducted after 2 weeks showed that short-circuit current was 0.21 μA cm−2 and open-circuit voltage was 0.5 V with a fill factor of 9.8%, suggesting the possibility of stable AVPV-based organic solar cell (OSC).  相似文献   

10.
Novel iminocoumarin dyes (2a-c and 3a-c) having carboxyl and hydroxyl anchoring groups onto the dyes skeletons have been designed and synthesized for the application of dye-sensitized nanocrystalline TiO2 solar cells (DSSCs). The photophysical and electrochemical studies showed that these iminocoumarin dyes are suitable as light harvesting sensitizers in DSSC application. The dyes having carboxyl and hydroxyl anchoring groups (2a-c) showed better efficiency when compared to the dyes having carboxyl group (3a-c) alone. The cell consisted of dye 2a generated the highest solar-to-electricity conversion efficiency (η) of 0.767% (open circuit voltage (Voc) = 0.491 V, short circuit photocurrent density (Jsc) = 2.461 mA cm−2, fill factor (ff) = 0.635) under simulated AM 1.5 irradiation (1000 W m−2) with a total semiconductor area of 0.25 cm2. The corresponding incident photon-to-current conversion efficiency (IPCE) of the above cell was 21.38%. The overall low efficiency of the dyes is ascribed to the lack of light harvesting ability at longer wavelength region.  相似文献   

11.
An indium tin oxide/titanium oxide/[6,6]-phenyl C61 butyric acid methyl ester:regioregular poly(3-hexylthiophene)/poly(3,4-ethylenedioxylenethiophene):poly(4-styrene sulfonic acid)/Au type organic solar cell (ITO/TiOx/PCBM:P3HT/PEDOT:PSS/Au) with 1 cm2 active area, which is called “inverted-type solar cell”, was developed using an ITO/amorphous titanium oxide (TiOx) electrode prepared by a sol-gel technique instead of a low functional electrode such as Al. The power conversion efficiency (η) of 2.47% was obtained by irradiating AM 1.5G-100 mW cm−2 simulated sunlight. We found that a photoconduction of TiOx by irradiating UV light containing slightly in the simulated sunlight was required to drive this solar cell. The device durability in an ambient atmosphere was maintained for more than 20 h under continuous light irradiation. Further, when the air-stable device was covered by a glass plate with a water getter sheet which was coated by an epoxy-UV resin as sealing material, the durability was still higher and over 96% of relative efficiency was observed even after continuous light irradiation for 120 h.  相似文献   

12.
High conversion efficiency for (amorphous/microcrystalline) "micromorph" tandem solar cells requires both a dedicated light management, to keep the absorber layers as thin as possible, and optimized growth conditions of the microcrystalline silicon (μc-Si:H) material. Efficient light trapping is achieved here by use of textured front and back contacts as well as by implementing an intermediate reflecting layer (IRL) between the individual cells of the tandem. This paper discusses the latest developments of IRLs at IMT Neuchâtel: SiOx based for micromorphs on glass and ZnO based IRLs for micromorphs on flexible substrates were successfully incorporated in micromorph tandem cells leading to high, matched, current above 13.8 mA/cm2 for p-i-n tandems. In n-i-p configuration, asymmetric intermediate reflectors were employed to achieve currents of up to 12.5 mA/cm2. On glass substrates, initial and stabilized efficiencies exceeding 13% and 11%, respectively, were thus obtained on 1 cm2 cells, while on plastic foils with imprinted gratings, 11.2% initial and 9.8% stable efficiency could be reached. Recent progress on the development of effective front and back contacts will be described as well.  相似文献   

13.
The effect of organic salt, tetrabutylammonium hexafluorophosphate (TBAPF6) doping on the performance of single layer bulk heterojunction organic solar cell with ITO/MEHPPV:PCBM/Al structure was investigated where indium tin oxide (ITO) was used as anode, poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEHPPV) as donor, (6,6)-phenyl-C61 butyric acid methyl ester (PCBM) as acceptor and aluminium (Al) as cathode. In contrast to the undoped device, the electric field-treated device doped with TBAPF6 exhibited better solar cell performance under illumination with a halogen projector lamp at 100 mW/cm2. The short circuit current density and the open circuit voltage of the doped device increased from 0.54 μA/cm2 to 6.41 μA/cm2 and from 0.24 V to 0.50 V, respectively as compared to those of the undoped device. The significant improvement was attributed to the increase of built-in electric field caused by accumulation of ionic species at the active layer/electrode interfaces.  相似文献   

14.
We report the performance improvement of organic solar cell by addition of an n-type chemical doping layer in organic bulk heterojunction device. The power conversion efficiency (PCE) of P3HT and PCBM-71 based polymer solar cells increases by adding a mixture of TCNQ (7,7,8,8-tetracyanoquinodimethane) and LCV (Leucocrystal violet) between active layer and cathode electrode. The PCE of the cell increases by 14% compared to the control cell with Al-only cathode electrode. The device with an organic n-doped layer shows the JSC of 8.88 mA/cm2, VOC of 0.51 V, FF of 60.1%, and thus the PCE of 2.72% under AM1.5 illumination of 100 mW/cm2.  相似文献   

15.
We report the effect of CdCl2 vapor treatment on the photovoltaic parameters of CdS/CdTe solar cells. Vapor treatment allows combining CdCl2 exposure time and annealing in one step. In this alternative treatment, the CdS/CdTe substrates were treated with CdCl2 vapor in a close spaced sublimation (CSS) configuration. The substrate temperature and CdCl2 powder source temperature were 400 °C. The treatment was done by varying the treatment time (t) from 15 to 90 min. Such solar cells are examined by measuring their current density versus voltage (J-V) characteristics. The open-circuit voltage (Voc), short circuit current density (Jsc) and fill factor (FF) of our best cell, fabricated and normalized to the area of 1 cm2, were Voc = 663 mV, Jsc = 18.5 mA/cm2 and FF = 40%, respectively, corresponding to a total area conversion efficiency of η = 5%. In cells of minor area (0.1 cm2) efficiencies of 8% have been obtained.  相似文献   

16.
Highly aluminum-doped p-type silicon regions are formed by in-line high-rate evaporation of aluminum. We deposit aluminum layers of 28 μm thickness at dynamic deposition rates of 20 μm×m/min on p-type silicon substrates. Due to the high substrate temperature of up to 770 °C during deposition an Al-doped p+ region is formed. Using the camera-based dynamic infrared lifetime mapping technique we measure emitter saturation current densities of 695±65 fA/cm2 for the fully metalized Al-p+ regions, which corresponds to an implied solar cell open-circuit voltage of 635±2 mV.  相似文献   

17.
Aluminum doped ZnOx (ZnOx:Al) films have been deposited on glass in an in-line industrial-type reactor by a metalorganic chemical vapor deposition process at atmospheric pressure. Tertiary-butanol has been used as oxidant for diethylzinc and trimethylaluminium as dopant gas. ZnOx:Al films can be grown at very high deposition rates of ∼14 nm/s for a substrate speed from 150 to 500 mm/min. The electrical, structural (crystallinity and morphology) and optical properties of the deposited films have been characterized by using Hall, four point probe, X-ray diffraction, atomic force microscope and spectrophotometer, respectively. All the films have c-axis, (002) preferential orientation and good crystalline quality. ZnOx:Al films are highly conductive (R<9 Ω/sq, for a film thickness above 1300 nm) and transparent in the visible range (>80%). These results show that ZnOx:Al films with good electrical and optical properties can be grown with a high throughput industrial CVD process at atmospheric pressure. First p-i-n a-Si:H solar cells have been deposited on this material, with initial efficiency approaching 8%.  相似文献   

18.
Thin films of Cu2ZnSnS4 (CZTS), a potential candidate for absorber layer in thin film heterojunction solar cell, have been successfully deposited by spray pyrolysis technique on soda-lime glass substrates. The effect of substrate temperature on the growth of CZTS films is investigated. X-ray diffraction studies reveal that polycrystalline CZTS films with better crystallinity could be obtained for substrate temperatures in the range 643-683 K. The lattice parameters are found to be a=0.542 and c=1.085 nm. The optical band gap of films deposited at various substrate temperatures is found to lie between 1.40 and 1.45 eV. The average optical absorption coefficient is found to be >104 cm−1.  相似文献   

19.
For HIT (heterojunction with intrinsic thin-layer) solar cell with Al back surface field on p-type Si substrate, the impacts of substrate resistivity on the solar cell performance were investigated by utilizing AFORS-HET software as a numerical computer simulation tool. The results show that the optimized substrate resistivity (Rop) to obtain the maximal solar cell efficiency is relative to the bulk defect density, such as oxygen defect density (Dod), in the substrate and the interface defect density (Dit) on the interface of amorphous/crystalline Si heterojunction. The larger Dod or Dit is, the higher Rop is. The effect of Dit is more obvious. Rop is about 0.5 Ω cm for Dit = 1.0 × 1011/cm2, but is higher than 1.0 Ω cm for Dit = 1.0 × 1012/cm2. In order to obtain very excellent solar cell performance, Si substrate, with the resistivity of 0.5 Ω cm, Dod lower than 1.0 × 1010/cm3, and Dit lower than 1.0 × 1011/cm2, is preferred, which is different to the traditional opinion that 1.0 Ω cm resistivity is the best.  相似文献   

20.
The temperature dependence of open-circuit voltage (Voc), short-circuit current (Isc), fill factor (FF), and relative efficiency of monograin Cu2ZnSn(SexS1−x)4 solar cell was measured. The light intensity was varied from 2.2 to 100 mW/cm2 and temperatures were in the range of = 175-300 K. With a light intensity of 100 mW/cm2dVoc/dT was determined to be −1.91 mV/K and the dominating recombination process at temperatures close to room temperature was found to be related to the recombination in the space-charge region. The solar cell relative efficiency decreases with temperature by 0.013%/K. Our results show that the diode ideality factor n does not show remarkable temperature dependence and slightly increases from n = 1.85 to n = 2.05 in the temperature range between 175 and 300 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号