首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 203 毫秒
1.
ZnO薄膜p型掺杂的研究进展   总被引:3,自引:0,他引:3  
ZnO薄膜作为一种多功能半导体材料,近年来一直受到广泛关注.然而,如何制备高质量的p型ZnO薄膜是实现其实用化的关键.概括了p型掺杂困难的原因,并指出Ⅲ-Ⅴ族元素共掺杂可能是p型掺杂的最好方法.简单回顾了ZnO薄膜p型掺杂的研究现状,并对今后的发展趋势进行了展望.  相似文献   

2.
掺杂ZnO薄膜的研究现状   总被引:1,自引:0,他引:1  
ZnO薄膜的性质取决于不同的掺杂元素和不同的制备工艺.概述了掺杂ZnO薄膜的研究现状,分析了不同掺杂组分对ZnO薄膜的p型转变特性、发光特性以及铁磁性质的影响,认为稀土掺杂可能使ZnO薄膜产生新的发光特性,共掺杂技术可能是实现ZnO薄膜特性改变的新途径.  相似文献   

3.
ZnO薄膜作为一种多功能半导体材料,近年来一直受到广泛关注。然而,如何制备高质量的p型ZnO薄膜是实现其实用化的关键。概括了p型掺杂困难的原因,并指出Ⅲ-Ⅴ族元素共掺杂可能是p型掺杂的最好方法。简单回顾了ZnO薄膜p型掺杂的研究现状,并对今后的发展趋势进行了展望。  相似文献   

4.
ZnO材料以其优良的光电特性和相对低廉的成本而倍受人们的青睐,但是要获得高质量的p型ZnO薄膜难度极大,这已成为阻碍ZnO基光电器件走向实用化的主要障碍。综述了p型ZnO薄膜掺杂面临的困难、p型ZnO掺杂理论进展及实现p型ZnO薄膜的各种掺杂方法,并对p型ZnO薄膜的各种制备工艺方法进行了概括和比较,最后指出了提高p型ZnO薄膜质量的努力方向。  相似文献   

5.
p型ZnO掺杂及其发光器件研究进展与展望   总被引:1,自引:1,他引:0  
ZnO是一种新型的Ⅱ-Ⅵ族宽带隙半导体,具有很多优异的的光电性能.但一般制备出的ZnO薄膜材料均是n型,很难实现p型的掺杂.ZnO的p型掺杂是实现其光电器件应用的关键技术,也是目前ZnO研究的关键课题.目前在p型ZnO的掺杂理论和实验方面都有很大的进展,对此进行了详细的分析与论述,并且展望了p型ZnO薄膜制备的前景.  相似文献   

6.
ZnO作为重要的第三代半导体材料在光电领域具有广泛的应用前景因而引起越来越多的关注,ZnO薄膜的p型掺杂是实现ZnO基光电器件的关键,也是ZnO材料的主要研究课题.本文论述了ZnO薄膜P型转变的难点及其解决方法,概述了ZnO薄膜p型掺杂的研究现状,提出了有待进一步研究的问题.  相似文献   

7.
p型ZnO和ZnO同质p-n结的研究进展   总被引:3,自引:0,他引:3  
ZnO基注入式发光二极管和激光器件的研究目前仍处于初级阶段.即p型ZnO和ZnOp-n结的制备与特性研究。由于ZnO薄膜中存在较强的自补偿机制,使得很难有效地施行p型元素的掺杂。本文介绍了目前国际上通用的掺杂方法.对不同方法制备的p型ZnO和ZnOp-n结的特点进行了比较分析,并讨论了目前生长高质量的突变型ZnOp-n结所面临的问题。  相似文献   

8.
ZnO薄膜是一种应用广泛的半导体材料.近几年来,随着对ZnO的光电性质及其在光电器件方面应用的开发研究,ZnO薄膜成为研究热点之一.制备掺杂的p型ZnO是形成同质p-n结以及实现其实际应用的重要途径.近来已在p型ZnO及其同质结发光二极管(LED s)研究方面取得了较大的进展.目前报道的p型ZnO薄膜的电阻率已降至10-3Ω.cm量级.得到了具有较好非线性伏安特性的ZnO同质p-n结和紫外发光LED.本文就其最新进展进行了综述.  相似文献   

9.
艾常涛  李珍 《材料导报》2005,19(5):7-10
结合当前掺杂ZnO功能薄膜的制备方法、工艺条件,综述了不同掺杂元素对ZnO薄膜的结构、电学、光学性能、气敏特性以及应用领域等方面的影响,并展望了ZnO功能薄膜的发展趋势.  相似文献   

10.
近年来人们发现利用银掺杂方案能制备出导电性良好的p型ZnO薄膜,并能增强ZnO的紫外发光强度,还可以形成各种纳米微结构从而产生一些新的特性.这很可能为ZnO基光电器件的应用提供新思路.综述了几年来国内外在银掺杂ZnO薄膜的电学性质、光学性质和结构方面的研究进展,并探讨了目前存在的问题及今后研究的方向.  相似文献   

11.
金刚石虽然具有极为优异的性能,如具有很大的能隙,高的电子迁移率、空穴迁移率和高热导率,以及负的电子亲和势,但要将它用于半导体材料时还不能直接使用,必须要先进行金刚石的P型和n型掺杂。因此,研究金刚石的P型和n型掺杂具有很重要的现实意义。在金刚石薄膜中掺杂时,一般是掺入硼原子以实现P型掺杂,掺入氮原子或磷原子以实现n型掺杂。然而,由于N和P在金刚石中的施主能级太深,现在n型掺杂金刚石薄膜制备尚不成功,这是金刚石实用化的障碍。本文介绍了金刚石膜掺硼目的、方法和制备,总结了掺硼金刚石膜在微电子、电化学、光电子、工具等领域应用状况以及存在问题。  相似文献   

12.
ZnO薄膜p型转变的难点及解决新方法   总被引:1,自引:0,他引:1  
论述了ZnO薄膜p型转变的难点及其解决方法的最新研究进展,并讨论了Al N H共掺杂生长p-ZnO薄膜的掺杂机制,提出多层缓冲层生长工艺以实现p-ZnO薄膜的可控掺杂,进而优化薄膜性能.  相似文献   

13.
ZnO纳米材料的p型掺杂研究进展   总被引:1,自引:0,他引:1  
随着近年来各种形貌ZnO纳米材料的生长及ZnO纳米器件的研究,ZnO纳米材料的p型掺杂逐渐成为研究的重点之一.主要介绍了ZnO纳米材料的p型掺杂及其器件研究进展,简要讨论了当前掺杂研究的局限,展望了今后的发展方向.  相似文献   

14.
An optical characterization method for determination of spatial doping level concentration in n-type 4H-SiC and p-type 6H-SiC is discussed. The absorption bands of free charge carriers at 460 nm in n-type 4H-SiC are used to determine its doping concentration. In p-type 6H-SiC, the band edge related absorption at 410 nm is a measure for the doping concentration. In both cases, Hall measurements are performed for calibration. Various examples of SiC-wafer mappings are shown and the relationships to crystal growth conditions, i.e. control of doping level and distribution, are investigated.  相似文献   

15.
ZnO薄膜p型掺杂的研究进展   总被引:14,自引:0,他引:14  
ZnO是一种新型的II-VI族半导体材料,具有许多优异的性能.但由于ZnO存在诸多的本征施主缺陷(如空位氧Vo和间隙锌Zni),对受主产生高度自补偿作用,天然为n型半导体,难以实现p型转变.ZnO薄膜p型掺杂的实现是ZnO基光电器件的关键技术,也一直是ZnO研究中的主要课题,目前已取得重大进展,文章对此进行了详细阐述.  相似文献   

16.
Ian Y.Y. Bu 《Vacuum》2011,86(1):106-110
The aim of this study is to synthesis large area, plastic compatible of p-type nanocrystalline silicon through conventional sputter system. The growth of and p-type doping of nanocrystalline silicon onto plastic substrates using D.C. magnetron sputtering was investigated. The film properties were examined by Raman spectroscopy, X-ray Diffraction, scanning electron microscopy and energy dispersive spectrometry. Nanocrystalline silicon was achieved with careful control of ion bombardment energy. Through a narrow experimental, window room temperature, nanocrystalline silicon can be synthesised on aluminium. It is believed the aluminium reduces the required energy for crystallite nucleation. PN junction was formed through sputtering of Al/Al-Si/n-type Si/AZO structure. The I-V characteristic showed good rectifying behaviour and confirms p-type doping via aluminium induced crystallization.  相似文献   

17.
Maslar J  Hurst W  Wang CA 《Applied spectroscopy》2007,61(10):1093-1102
The interpretation of Raman spectra of GaSb can be complicated by the presence of a so-called surface space-charge region (SSCR), resulting in an inhomogeneous near-surface Raman scattering environment. To fully interpret Raman spectra, it is important to have an understanding of the SSCR profile relative to the Raman probe depth. However, a priori determination of even the actual SSCR width is not always possible for GaSb under a wide range of doping levels. The primary objective of this report is to provide a convenient reference to aid in the determination of relative contributions to an observed GaSb Raman spectrum of SSCR scattering and bulk scattering for a range of excitation wavelengths, doping levels, and SSCR widths and types. Raman spectra of both n-type and p-type doped GaSb epilayers were obtained using 488 nm, 514.5 nm, 647.1 nm, and 752.55 nm excitation radiation. Both n-type and p-type doped GaSb epilayers were selected for investigation because these layers exhibit the two different SSCR types that are typically encountered with as-grown GaSb and related materials. A range of doping levels were examined for each doping type so as to examine the effects of a varying SSCR width on the observed spectra. A secondary objective of this report is to demonstrate the performance of a spectroscopic system based on 752.55 nm excitation that is sensitive to bulk carrier properties in n-type and p-type doped GaSb epilayers over a wide doping range, unlike visible-wavelength-based optical systems.  相似文献   

18.
《Vacuum》2012,86(1):106-110
The aim of this study is to synthesis large area, plastic compatible of p-type nanocrystalline silicon through conventional sputter system. The growth of and p-type doping of nanocrystalline silicon onto plastic substrates using D.C. magnetron sputtering was investigated. The film properties were examined by Raman spectroscopy, X-ray Diffraction, scanning electron microscopy and energy dispersive spectrometry. Nanocrystalline silicon was achieved with careful control of ion bombardment energy. Through a narrow experimental, window room temperature, nanocrystalline silicon can be synthesised on aluminium. It is believed the aluminium reduces the required energy for crystallite nucleation. PN junction was formed through sputtering of Al/Al–Si/n-type Si/AZO structure. The I–V characteristic showed good rectifying behaviour and confirms p-type doping via aluminium induced crystallization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号