首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
P-type microcrystalline silicon (μc-Si (p)) on n-type crystalline silicon (c-Si(n)) heterojunction solar cells is investigated. Thin boron-doped μc-Si layers are deposited by plasma-enhanced chemical vapor deposition on CZ-Si and the Voc of μc-Si/c-Si heterojunction solar cells is higher than that produced by a conventional thermal diffusion process. Under the appropriate conditions, the structure of thin μc-Si films on (1 0 0), (1 1 0), and (1 1 1) CZ-Si is ordered, so high Voc of 0.579 V is achieved for 2×2 cm2 μc-Si/multi-crystalline silicon (mc-Si) solar cells. The epitaxial-like growth is important in the fabrication of high-efficiency μc-Si/mc-Si heterojunction solar cells.  相似文献   

2.
Annealing effects of the single-crystalline silicon solar cells with hydrogenated microcrystaline silicon (μc-Si : H) film were studied to improve the conversion efficiency. Boron-doped (p+) μc-Si : H film was deposited in a RF plasma enhanced chemical vapor deposition system (RF plasma CVD) on the rear surface of the cell. With the optimized annealing conditions for the substrate, the conversion efficiency of 21.4% (AM1.5, 25°C, 100 mW/cm2) was obtained for 5 × 5 cm2 area single crystalline-solar cell.  相似文献   

3.
The effects of the silane concentration f on the structural, optical and electrical properties of undoped hydrogenated silicon films prepared in a plasma-enhanced chemical vapour deposition system have been studied. The electrical conductivity and Hall mobility appear to be controlled by microstructures induced by silane concentration and a clear electrical transport transition from crystalline to amorphous phase has been found when 3%<f<4%. A two-phase model has been used to discuss the electrical properties.  相似文献   

4.
A new method, Hot-wire assisted PECVD, is proposed for preparing μc-Si:H films. This method is constructed of two parts, plasma-enhanced CVD (PECVD) and hot-wire for exciting hydrogen. Both the crystalline grain size and the volume fraction of Si crystallites in the film are improved by this preparation method compared with those of the conventional PECVD. The results obtained are interpreted by the enhanced hydrogen-radical density. The importance of control of H radicals is discussed for the growth of the crystallite.  相似文献   

5.
The trap-assisted tunnelling theory was developed to describe the tunnelling of charge carriers via bandgap energy levels in structures based on hydrogenated amorphous silicon and microcrystalline silicon. Its implementation into ASPIN numerical simulator is explained. Models that were verified on n/p single junctions were applied in the tunnel recombination junction area of a tandem solar cell. Thus, it is possible to study a multi-layer solar cell without separately simulating any of its components.  相似文献   

6.
We report on boron-doped μc-Si:H films prepared by hot-wire chemical vapor deposition (HWCVD) using silane as a source gas and trimethylboron (TMB) as a dopant gas and their incorporation into all-HW amorphous silicon solar cells. The dark conductivity of these films was in the range of 1–10 (Ω cm)−1. The open circuit voltage Voc of the solar cells was found to decrease from 840 mV at low hydrogen dilution H-dil=91% to 770 mV at high H-dil =97% during p-layer deposition which can be attributed to the increased crystallinity at higher H-dil and to subsequent band edge discontinuity between μc-Si:H p- and amorphous i-layer. The short circuit current density Jsc and the fill factor FF show an optimum at an intermediate H-dil and decrease for the highest H-dil. To improve the conversion efficiency and the reproducibility of the solar cells, an amorphous-like seed layer was incorporated between TCO and the bulk p-layer. The results obtained until now for amorphous solar cells with and without the seed layer are presented. The I–V parameters for the best p–i–n solar cell obtained so far are Jsc=13.95 mA/cm2, Voc=834 mV, FF=65% and η=7.6%, where the p-layers were prepared with 2% TMB. High open circuit voltages up to 847 mV could be achieved at higher TMB concentrations.  相似文献   

7.
Impurity doping using B2H6 gas using hot-wire CVD has been tried for hydrogenated amorphous silicon-carbon (a-SiCX:H) alloy films including hydrogenated microcrystalline silicon (μc-Si:H) with carbon content, C/(Si+C), of about 28%. The dark- and photoconductivities of B-doped samples are larger than those of undoped samples. The activation energy for dark conductivity of the B-doped sample with the doping gas ratio, B2H6/(SiH4+CH4), of about 0.054% is 0.17 eV. This value is smaller than that of the undoped sample. The P-doped samples also show larger dark- and photoconductivities and smaller activation energy than the undoped samples.  相似文献   

8.
The aim of this communication is to show that it is possible to extend the model of the electronic transport developed for amorphous silicon (a-Si:H) to microcrystalline silicon (μc-Si:H). By describing the electronic transport with the μ0τR products (mobility×recombination time) as a function of the Fermi level, we observed the same behaviour for both materials, indicating a similar type of recombination. Moreover, applying the normalised μ0τ0 product (mobility×life-time) obtained by combining the photoconductivity (σphoto) and the ambipolar diffusion length (Lamb) measured in individual layers, we are able, as in the case of a-Si:H, to predict the quality of the solar cells incorporating these layers as the active i layer.  相似文献   

9.
Outstanding passivation properties for p-type crystalline silicon surfaces were obtained by using very thin n-type microcrystalline silicon (μc-Si) layers with a controlled interface structure. The n-type μc-Si layers were deposited by the RF PE-CVD method with an insertion of an ultra-thin oxide (UTO) layer or an n-type amorphous silicon (a-Si : H) interface layer. The effective surface recombination velocity (SRV) obtained was very small and comparable to that obtained using thermal oxides prepared at 1000°C. The structural studies by HRTEM and Raman measurements suggest that the presence of UTO produces a very thin a-Si : H layer under the μc-Si. A crystal lattice discontinuity caused by these interface layers is the key to a small SRV.  相似文献   

10.
Multilayer structures of the type a-Si:H/μc-Si:H were fabricated for the first time by hot wire chemical vapor deposition (HW-CVD) technique. These multilayers were studied for their opto-electronic and photovoltaic properties as a function of a-Si:H sublayer thickness. The microcrystalline phase of a-Si (μc-Si:H) of thickness 250 Å have been used to create drift field in these multilayer structures. The quantum size and photovoltaic effects are observed in these multilayer structures. The persistent photoconductivity measurements clearly indicate the existence of interface defects and spatial charge separation due to the formation of p-n junction field. The best photovoltaic performance was obtained with the fill factor 0.4062 and conversion efficiency (η) 2.08% over an active area of 0.0132 cm2. The advantage in these multilayer structures is that no hazardous gases are involved in the fabrication process because no intentional doping is performed and all depositions were carried out in a single deposition chamber.  相似文献   

11.
Optical absorption spectra in the low-energy region 0.4–1.2 eV is reported for μc-Si:H using a photothermal deflection spectroscopy technique. Absorption coefficient spectra in the low-energy region contain important information related to defects and hydrogen. It is demonstrated that there is a good correlation between electron spin densities and integrated absorption coefficient spectra from 0.7 to 1.2 eV. The amount of the hydrogen molecules in microvoids is much larger in μc-Si:H than that in a-Si:H. Light illumination effects in PDS spectra has also been studied from a view point of photo degradation of the μc-Si:H.  相似文献   

12.
Resonant photothermal bending spectroscopy (R-PBS) has been developed for estimating absorption coefficient spectra of thin film semiconductors. This technique has been applied to hydrogenated microcrystalline silicon (μc-Si:H) films at different measurement temperatures. It is found that absorption coefficient of μc-Si:H films at 0.7–1.1 eV is relevant for the localized states and decreases with increasing measurement temperature. The localized state exists at 0.7 eV in the band gap from the band edge. The origin of the absorption is also discussed.  相似文献   

13.
In this paper is investigated an heterostructure based on p-doped textured wafers of crystalline silicon on which we deposited a buffer of lightly n-doped amorphous layer and an n+-doped layer. In particular, the effect of n-doping of amorphous silicon on the photovoltaic characteristics of the heterojunctions is studied. Starting from an extensive analysis of the doping efficiency of phosphine in microdoped materials we fabricated several devices varying the PH3/SiH4 ratio in the PECVD system. An optimum value of this ratio is found at 10−2, corresponding to the maximum of the photovoltaic efficiency of 11.5%.  相似文献   

14.
The concept of organic–inorganic hybrid composites for bulk sensitization of inorganic semiconductors by organic dye molecules is introduced. The idea is either to increase the absorptivity of e.g. indirect semiconductors as μc-Si or to expand in a two-step process the absorption spectrum of wide gap semiconductors to photons of energy smaller than the band gap. The composites are prepared by vacuum-based codeposition. Raman and optical spectroscopy, and photoemission have been used to prove the stability of the organic molecules ZnPc and F16ZnPc for the applied growth conditions. Enhancement of photoconductivity has been shown for ZnPc–Si bilayer. As a crucial parameter for the transfer of excited charges, the alignment of dye HOMO–LUMO states versus semiconductor band edges has been determined using photoelectron spectroscopy.  相似文献   

15.
16.
Boron doped p-type hydrogenated microcrystalline silicon (μc-Si:H) films have been prepared by radio-frequency glow discharge method. Highly conductive p-type μc-Si:H films can be obtained even with lower concentration of hydrogen in the rf glow discharge plasma if chamber pressure is low. Effects of increase in hydrogen (H2) flow rate and chamber pressure have been studied. The structural properties of the films have been studied by X-ray diffractometry. The electrical and optical characterization have been done by dark conductivity, Hall measurements and optical absorption measurements respectively. Film with conductivity 0.1(Ω-cm)−1 with band gap 2.1 eV has been obtained.  相似文献   

17.
Boron-doped hydrogenated microcrystalline silicon (μc-Si:H) films were prepared using hot-wire chemical vapor deposition (HWCVD) technique. Structural, electrical and optical properties of these thin films were systematically studied as a function of B2H6 gas (diborane) phase ratio (Variation in B2H6 gas phase ratio, dopant gas being diluted in hydrogen, affected the film properties through variation in doping level and hydrogen dilution). Characterization of these films from low angle X-ray diffraction and Raman spectroscopy revealed that the high conductive film consists of mixed phase of microcrystalline silicon embedded in an amorphous network. Even a small increase in hydrogen dilution showed marked effect on film microstructure. At the optimized deposition conditions, films with high dark conductivity (0.08 (Ω cm)−1) with low charge carrier activation energy (0.025 eV) and low optical absorption coefficient with high optical band gap (2.0 eV) were obtained. At these deposition conditions, however, the growth rate was small (6 Å/s) and hydrogen content was large (9 at%).  相似文献   

18.
通过AFORS-HET软件模拟了TCO/a-Si:H(p)/a-Si:H(i)/c-Si(n)/a-Si:H(i)/a-Si:H(n)/Ag结构的硅异质结电池中硅衬底电阻率、本征非晶硅薄膜厚度、发射极材料特性以及TCO功函数对电池性能的影响。结果表明:在其它参数不变的条件下,硅衬底电阻率越低,转换效率越高;发射极非晶硅薄膜厚度对短路电流有较大影响,发射极掺杂浓度低于7.0×1019cm-3时,电池各项性能参数都极差;TCO薄膜功函数应大于5.2 eV,以保证载流子的输运收集。  相似文献   

19.
The electrical and photoelectrical characteristics of the a-Si : H/c-Si (p-type) structure are measured. The structure is analysed as a Schottky diode in which the a-Si : H is considered as a diffusion barrier layer. The conventional h.f. CV theory is simplified and adapted to the analysis, which allows to estimate the initial band bending at the c-Si interface, the built-in electric field in the a-Si : H layer and the differential density of the a-Si : H/c-Si interface states.  相似文献   

20.
β‐iron oxide hydroxide (β‐FeOOH) had been proven to be an effective co‐catalyst during H2 evolution reaction (HER) process. In this research, a BiOCl/β‐FeOOH heterojunction was successfully synthesized by a solid‐state doping method. Then, the structure, composition, and photo‐electrochemical properties of the prepared photocatalysts were studied. For the superior HER photocatalytic activity of ultrasmall β‐FeOOH nanoparticles (NPs) and the formation of the BiOCl/β‐FeOOH heterojunction, this heterojunction photocatalyst exhibited very superior photocatalytic performance in the HER process. Especially, when the amount of incorporated β‐FeOOH NPs was appropriate, the BFOH‐2 possessed the highest photocatalytic activity in HER process, and the HER rate was about 16.64 mmol·g?1·h?1 during illuminated time of 6 hours under visible light. When appropriate, ultrasmall β‐FeOOH NPs were implanted into the structure of BiOCl, the BiOCl/β‐FeOOH heterojunction interfaces would form for the existence of interfacial interactions. Therefore, this BiOCl/β‐FeOOH heterojunction exhibited superior visible‐light response, fast photo‐carrier migration, and high‐efficient separation of photo‐carriers, so that the BFOH‐2 heterojunction possessed high‐efficient hydrogen evolution reaction (HER) photocatalytic activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号