首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Critical heat flux (CHF) in subcooled flow boiling under axially nonuniform heating conditions was experimentally investigated using a tube heated with a dc power source. The thickness of the tube wall in the axial direction was varied to attain axially nonuniform heating. The different thicknesses, therefore, separated the tube into regions of high heat flux and regions of low heat flux. The lengths of these regions of the tube were also varied to study the effect on the CHF. The objective of this system is to initiate boiling in the high-heat-flux region, thus increasing heat transfer, and to interrupt the bubble boundary layer in the low-heat-flux region. Because it is the initiation of boiling that increases heat transfer, the performance of such a system is linked to its effectiveness in repeatedly interrupting and re-establishing the bubble boundary layer. Our experiments, involving tubes that had sections of different thicknesses and different lengths, showed that when the heat flux in the low-heat-flux region was below the net vapor generation (NVG) heat flux, this system enhanced the CHF, but not when it was above the NVG. Also, for relatively short low-heat-flux regions, the CHF was not enhanced, presumably because there was insufficient time to interrupt the bubble boundary layer. © 1998 Scripta Technica, Heat Trans Jpn Res, 27(2): 169–178, 1998  相似文献   

2.
The pool boiling characteristics of dilute dispersions of alumina nanoparticles in water were studied. Consistent with other nanofluid studies, it was found that a significant enhancement in critical heat flux (CHF) can be achieved at modest nanoparticle concentrations (<0.1% by volume). During experimentation and subsequent inspection, formation of a porous layer of nanoparticles on the heater surface occurred during nucleate boiling. This layer significantly changes surface texture of the heater wire surface which could be the reason for improvement in the CHF value. © 2010 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.20301  相似文献   

3.
窄空间只有在间距小于汽泡脱离直径时,对沸腾传热强化才有比较显的效果。窄空间沸腾强化传热的机理在于较大的泡底微层加速了蒸发传热和窄空间中被加热的液体周期性地与池液进行容积交换。水平圆盘窄空间中的汽泡生长分为性质完全不同的自由生长期和抑制长大期;在一个周期内,加热面的总传热量等于壁面传导给窄空间液体的热量与通过合体泡底微层蒸发潜热之和。在对圆形水平窄空间的沸腾传热的现象和机理进行分析的基础上,提出了窄空间的沸腾换热过程的数理模型;进而对窄空间沸腾的本质规律在理论上进行了初步探索,并得到分析解。理论计算结果与实验数据比较表明,该分析解适合于中低壁面过热度的情形。由于问题的复杂性,该模型仍需不断完善。  相似文献   

4.
SurfacesInvestigationofEnhancedBoilingHeatTransferfromPorousSurfaces¥LinZhiping;MaTongze;ZhangZhengfang(InstituteofEngineerin...  相似文献   

5.
In this study, the critical heat flux (CHF) and heat‐transfer coefficient under the pool‐boiling state were tested using multi‐wall carbon nanotubes (MWCNT) CM‐95, CM‐100, and oxidized MWCNT CM‐100. The results showed that the highest CHF increase for both MWCNT CM‐95 and CM‐100 was at the volume fraction of 0.001%, and that the CHF increase ratio for MWCNT CM‐100 nanofluid with long particles was higher than that for MWCNT CM‐95 nanofluid with short particles. In addition, at the volume fraction of 0.001%, the oxidized MWCNT CM‐100 nanofluid indicated a 47.27% higher CHF‐increase ratio as well as an approximately 21.04% higher heat‐transfer coefficient increase ratio compared with the MWCNT CM‐100 nanofluid without oxidation treatment. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
An experimental study was conducted to investigate transient local heat transfer around a bubble at onset of boiling on a thin glass heating plate immersed in saturated n-hexane at low pressure. Eight rapid response Cu-Ni thermocouples consisting of a vacuum deposited thin film were used to measure the temperature change of the heating surface. Simultaneous high-speed video photographs were also obtained. The surface temperatures near a nucleation site decreased rapidly owing to the evaporation of a thin layer (microlayer) of liquid formed beneath the bubble in the early period and the rate of bubble growth increased with increasing incipient boiling superheat (ΔTIB). The thickness of the microlayer decreased markedly with increasing ΔTIB. © 1998 Scripta Technica, Heat Trans Jpn Res, 26(7): 484–492, 1997  相似文献   

7.
Heat transfer for flow boiling of water and critical heat flux (CHF) experiments in a half‐circumferentially heated round tube under low‐pressure conditions were carried out. To clarify the flow patterns in the heated section, experiments in the round tube under the same conditions were also carried out, and their results were compared. The experiments were conducted with atmospheric‐pressure water in test sections with inner diameter D = 6 mm, heated length L = 360 mm, inlet water subcooling ΔTin = 80 K, and mass velocity G from 0 to 2000 kg/(m2·s) for the half‐circumferentially heated round tube and from 0 to 7000 kg/(m2·s) for the full‐circumferentially heated tube. The experimental data demonstrated that the wall temperature near the outlet of the half‐circumferentially heated tube remained almost the same until CHF. It was found that burnout occurred when the flow regime changed from churn flow to annular flow, and the liquid film on the heated wall dried out although liquid film on the unheated wall remained. © 2002 Wiley Periodicals, Inc. Heat Trans Asian Res, 31(3): 149–164, 2002; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.10022  相似文献   

8.
首次对竖直矩形窄缝内的汽液分相流动区提出一维两相同向分相流动沸腾传热模型 ,并进行了数值计算 ,得到不同质量流速下液膜厚度变化和沸腾传热系数等结果。沸腾传热系数的模型预测值初步与已有实验关联式进行了比较 ,两者基本吻合 ,偏差在± 1 4% ;从而证实了液膜导热是竖直矩形窄缝内汽液分相流动区沸腾传热的主导机理。  相似文献   

9.
An experimental and semitheoretical study was carried out for the critical heat flux (CHF) on natural convective boiling in uniformly heated vertical short‐thick tubes and vertical short‐thick annular tubes submerged in saturated liquids. By adapting a mathematical dealing method based on the theoretical formulas of CHF of both the natural convective boiling in vertical narrow‐long tubes and the pool boiling, a simple semitheoretical formula was derived. The new formula expands the prediction range of CHF from pool boiling of vertical plates to very long vertical tubes and agrees well with the data of the tubes, annular tubes submerged in water or other liquids under various pressure conditions. © 2003 Wiley Periodicals, Inc. Heat Trans Asian Res, 32(5): 402–410, 2003; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.10103  相似文献   

10.
通过对五种尺寸的窄空间试验元件分别以水和乙醇做工质进行实验。研究了窄空间间距、窄空间尺寸、不同工质及不同热流密度对窄空间沸腾性能的影响。结果表明:当窄空间尺寸与热流通等因素组合恰当时。其换热系数可比大空间池沸腾提高3~6倍;临界热流密度有所降低。  相似文献   

11.
垂直矩形窄缝内的过冷流动沸腾换热性能   总被引:1,自引:0,他引:1  
用高速摄像等方法研究了有压模化介质在单一垂直矩形窄缝流道内的气泡形态和传热情况 ,发现窄缝流动沸腾换热强化的原因在于流道尺寸较小 ,气泡的形状发生变化 ,增加了界面体积浓度 ,并强化了对加热面附近的扰动 ,使换热有所强化。通过与实际测量的壁温数据进行比较 ,发现用于计算大流道和池过冷沸腾换热的 Rohsenow关系式预测窄流道内高热流密度下的过冷流动沸腾换热的误差不大 ,但对于较低热流密度下的过冷流动沸腾时误差较大 ;通过最小二乘法对 Rohsenow关系式进行修正后 ,误差低于± 2 5 %。  相似文献   

12.
Much progress has been made in high‐performance electronic chips, the miniaturization of electronic circuits and other compact systems recently, which brings about a great demand for developing efficient heat removal techniques to accommodate these high heat fluxes. With this objective in mind, experiments were carried out on five kinds of test elements with distilled water and ethanol as working liquids. The test elements used in these experiments consisted of five parallel discs with diameters varying from 5 mm to 40 mm. The experiments were performed with the discs oriented horizontally and uniform heat fluxes applied at the bottom surfaces. The influence of narrow spacing, space size, working liquid property, and heat flux on boiling heat transfer performance in narrow spaces has been investigated. Experimental results showed that the boiling heat transfer coefficient of a narrow space was 3 to 6 times higher than that of pool boiling when the narrow space size and heat flux combine adequately, but the critical heat flux was lower than that of pool boiling. © 2004 Wiley Periodicals, Inc. Heat Trans Asian Res, 33(5): 307–315, 2004; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.20017  相似文献   

13.
Heat transfer coefficients were measured during pool boiling of binary mixtures on a heated wire hung horizontally and bubble behavior was simultaneously captured with a high‐speed video camera. The experiment was carried out at a pressure of 0.4 and 0.7 MPa for the whole range of mass fractions in a binary mixture of R22/R11. We clarified the change in bubble behavior and heat transfer by measuring the bubble departure diameter, frequency and growth rate on the basis of the video images. Furthermore, we discussed the relationship between the bubble behavior and the boiling heat transfer coefficient in the binary mixtures. © 2005 Wiley Periodicals, Inc. Heat Trans Asian Res, 34(7): 449–459, 2005; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.20087  相似文献   

14.
The study was focused on the effect of the inclination angle on the critical heat flux of countercurrent boiling in an inclined uniformly heated tube with open top and closed bottom ends at zero inlet flow. The experimental results show that the CHF data of the small vertical tubes agree reasonably well with the predicting correlation proposed by Tien. The CHF data of the small inclined tubes decrease with reducing the inclination angle. The experimental data of the inclined tubes agrees reasonably well with the modified correlation, which is resulted from the conventional correlation for vertical tubes.  相似文献   

15.
This study examines both high-flux flow boiling and critical heat flux (CHF) under highly subcooled conditions using FC-72 as working fluid. Experiments were performed in a horizontal flow channel that was heated along its bottom wall. High-speed video imaging and photomicrographic techniques were used to capture interfacial features and reveal the sequence of events leading to CHF. At about 80% of CHF, bubbles coalesced into oblong vapor patches while sliding along the heated wall. These patches grew in size with increasing heat flux, eventually evolving into a fairly continuous vapor layer that permitted liquid contact with the wall only in the wave troughs between vapor patches. CHF was triggered when this liquid contact was finally halted. These findings prove that the CHF mechanism for subcooled flow boiling is consistent with the interfacial lift-off mechanism proposed previously for saturated flow boiling.  相似文献   

16.
以蒸馏水为工质,在常压下,对间隙为1mm的环形狭缝通道中的流动传热进行了实验研究。分别将狭缝通道中的单相强制对流和过冷沸腾的实验数据与传统的Dittus-Boelter型关系式的计算结果进行了比较。通过分析狭缝通道中流动沸腾的传热特性认为,过冷沸腾传热比单相强制对流传热加强;质量流速对狭缝通道中的流动沸腾传热有较大影响。  相似文献   

17.
A mechanism is proposed for nucleate pool boiling heat transfer along with a general model for both pure liquids and binary mixtures. A combined physical model of bubble growth is also proposed along with a corresponding bubble growth model for pure liquids on smooth tubes. Using the general model and the bubble growth model for pure liquids, an analytical model for nucleate pool boiling heat transfer of pure liquids on smooth tubes is developed.  相似文献   

18.
Factors concerning the characteristics of boiling heat transfer are analyzed theoretically. Based on the experimental data of boiling heat transfer through annular channels with the gaps of 1–2 mm, three correlations which will be used to calculate the heat transfer in the similar conditions are given. The results obtained from these correlations are compared with experimental data. The main factors having influence on boiling heat transfer through narrow channels, and the desirable correlation are determined. This correlation can be used to predict the flow boiling heat transfer within the range of this experiment. © 2005 Wiley Periodicals, Inc. Heat Trans Asian Res, 34(2): 78–84, 2005; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.20049  相似文献   

19.
An experiment on pool boiling in methanol was performed for a case in which the boiling space was controlled by an interference plate with many holes. The narrow space, 0.12 mm in thickness, between the heat transfer surface and the interference plate was hermetically sealed at the perimeter. Therefore, the vapor and liquid were only exchanged through the holes in the interference plate. The degree of superheat at the onset of boiling was 0.7 K without overshoot at 10‐mm plate thickness, 1‐mm hole diameter, and 3.85‐mm hole pitch. The critical heat flux obtained was the same value without the interference plate mentioned above. The interference plate disturbed free convection and a superheat layer was provided under small heat flux on the heat transfer surface. The critical bubble diameter for the onset of boiling was decreased as the temperature of the superheat layer was increased. Thus, the degree of superheat at the onset of boiling was decreased. © 2004 Wiley Periodicals, Inc. Heat Trans Asian Res, 33(7): 462–471, 2004; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.20028  相似文献   

20.
This paper is the second portion of a two-part study concerning the flow boiling of liquid nitrogen in the micro-tubes with the diameters of 0.531, 0.834, 1.042 and 1.931 mm. The contents include the heat transfer characteristics and critical heat flux (CHF). The local wall temperatures are measured, from which the local heat transfer coefficients are determined. The influences of heat flux, mass flux, pressure and tube diameter on the flow boiling heat transfer coefficients are investigated systematically. Two regions with different heat transfer mechanism can be classified: the nucleate boiling dominated region for low mass quality and the convection evaporation dominated region for high mass quality. For none of the existed correlations can predict the experimental data, a new correlation expressed by Co, Bo, We, Kp and X is proposed. The new correlation yields good fitting for 455 experimental data of 0.531, 0.834 and 1.042 mm micro-tubes with a mean absolute error (MAE) of 13.7%. For 1.931 mm tube, the flow boiling heat transfer characteristics are similar to those of macro-channels, and the heat transfer coefficient can be estimated by Chen correlation. Critical heat flux (CHF) is also measured for the four tubes. Both the CHF and the critical mass quality (CMQ) are higher than those for conventional channels. According to the relationship that CMQ decreases with the mass flux, the mechanism of CHF in micro-tubes is postulated to be the dryout or tear of the thin liquid film near the inner wall. It is found that CHF increases gradually with the decrease of tube diameter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号