首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 108 毫秒
1.
介绍一种基于模糊逻辑的数据聚类技术,讨论了模糊C均值聚类方法。模糊C均值算法就是利用模糊逻辑理论和聚类思想,将n样本划分到c个类别中的一个,使得被划分到同一簇的对象之间相似度最大,而不同簇之间的相似度最小。  相似文献   

2.
模糊c均值聚类算法是目前聚类分析中最受欢迎的算法之一,但其聚类效果往往受初始参数的影响.针对这一问题,提出一种基于网格和密度的模糊c均值聚类初始化方法.以网格和密度为工具提取聚类样本的类聚类中心,以此来初始化模糊c均值聚类算法的初始参数,从而弥补原算法的不足.实验证明方法是可行的、有效的.  相似文献   

3.
Over the years data clustering algorithms have been used for image segmentation. Due to the presence of uncertainty in real life datasets, several uncertainty based data clustering algorithms have been developed. The c-means clustering algorithms form one such family of algorithms. Starting with the fuzzy c-means (FCM) a subfamily of this family comprises of rough c-means (RCM), intuitionistic fuzzy c-means (IFCM) and their hybrids like rough fuzzy c-means (RFCM) and rough intuitionistic fuzzy c-means (RIFCM). In the basic subfamily of this family of algorithms, the Euclidean distance was being used to measure the similarity of data. However, the sub family of algorithms obtained replacing the Euclidean distance by kernel based similarities produced better results. Especially, these algorithms were useful in handling viably cluster data points which are linearly inseparable in original input space. During this period it was inferred by Krishnapuram and Keller that the membership constraints in some rudimentary uncertainty based clustering techniques like fuzzy c-means imparts them a probabilistic nature, hence they suggested its possibilistic version. In fact all the other member algorithms from basic subfamily have been extended to incorporate this new notion. Currently, the use of image data is growing vigorously and constantly, accounting to huge figures leading to big data. Moreover, since image segmentation happens to be one of the most time consuming processes, industries are in the need of algorithms which can solve this problem at a rapid pace and with high accuracy. In this paper, we propose to combine the notions of kernel and possibilistic approach together in a distributed environment provided by Apache™ Hadoop. We integrate this combined notion with map-reduce paradigm of Hadoop and put forth three novel algorithms; Hadoop based possibilistic kernelized rough c-means (HPKRCM), Hadoop based possibilistic kernelized rough fuzzy c-means (HPKRFCM) and Hadoop based possibilistic kernelized rough intuitionistic fuzzy c-means (HPKRIFCM) and study their efficiency in image segmentation. We compare their running times and analyze their efficiencies with the corresponding algorithms from the other three sub families on four different types of images, three different kernels and six different efficiency measures; the Davis Bouldin index (DB), Dunn index (D), alpha index (α), rho index (ρ), alpha star index (α*) and gamma index (γ). Our analysis shows that the hyper-tangent kernel with Hadoop based possibilistic kernelized rough intuitionistic fuzzy c-means is the best one for image segmentation among all these clustering algorithms. Also, the times taken to render segmented images by the proposed algorithms are drastically low in comparison to the other algorithms. The implementations of the algorithms have been carried out in Java and for the proposed algorithms we have used Hadoop framework installed on CentOS. For statistical plotting we have used matplotlib (python library).  相似文献   

4.
Effective fuzzy c-means clustering algorithms for data clustering problems   总被引:3,自引:0,他引:3  
Clustering is a well known technique in identifying intrinsic structures and find out useful information from large amount of data. One of the most extensively used clustering techniques is the fuzzy c-means algorithm. However, computational task becomes a problem in standard objective function of fuzzy c-means due to large amount of data, measurement uncertainty in data objects. Further, the fuzzy c-means suffer to set the optimal parameters for the clustering method. Hence the goal of this paper is to produce an alternative generalization of FCM clustering techniques in order to deal with the more complicated data; called quadratic entropy based fuzzy c-means. This paper is dealing with the effective quadratic entropy fuzzy c-means using the combination of regularization function, quadratic terms, mean distance functions, and kernel distance functions. It gives a complete framework of quadratic entropy approaching for constructing effective quadratic entropy based fuzzy clustering algorithms. This paper establishes an effective way of estimating memberships and updating centers by minimizing the proposed objective functions. In order to reduce the number iterations of proposed techniques this article proposes a new algorithm to initialize the cluster centers.In order to obtain the cluster validity and choosing the number of clusters in using proposed techniques, we use silhouette method. First time, this paper segments the synthetic control chart time series directly using our proposed methods for examining the performance of methods and it shows that the proposed clustering techniques have advantages over the existing standard FCM and very recent ClusterM-k-NN in segmenting synthetic control chart time series.  相似文献   

5.
Clustering for symbolic data type is a necessary process in many scientific disciplines, and the fuzzy c-means clustering for interval data type (IFCM) is one of the most popular algorithms. This paper presents an adaptive fuzzy c-means clustering algorithm for interval-valued data based on interval-dividing technique. This method gives a fuzzy partition and a prototype for each fuzzy cluster by optimizing an objective function. And the adaptive distance between the pattern and its cluster center varies with each algorithm iteration and may be either different from one cluster to another or the same for all clusters. The novel part of this approach is that it takes into account every point in both intervals when computing the distance between the cluster and its representative. Experiments are conducted on synthetic data sets and a real data set. To compare the comprehensive performance of the proposed method with other four existing methods, the corrected rand index, the value of objective function and iterations are introduced as the evaluation criterion. Clustering results demonstrate that the algorithm proposed in this paper has remarkable advantages.  相似文献   

6.
Fuzzy clustering is a widely applied method for extracting the underlying models within data. It has been applied successfully in many real-world applications. Fuzzy c-means is one of the most popular fuzzy clustering methods because it produces reasonable results and its implementation is straightforward. One problem with all fuzzy clustering algorithms such as fuzzy c-means is that some data points which are assigned to some clusters have low membership values. It is possible that many samples may be assigned to a cluster with low-confidence. In this paper, an efficient and noise-aware implementation of support vector machines, namely relaxed constraints support vector machines, is used to solve the mentioned problem and improve the performance of fuzzy c-means algorithm. First, fuzzy c-means partitions data into appropriate clusters. Then, the samples with high membership values in each cluster are selected for training a multi-class relaxed constraints support vector machine classifier. Finally, the class labels of the remaining data points are predicted by the latter classifier. The performance of the proposed clustering method is evaluated by quantitative measures such as cluster entropy and Minkowski scores. Experimental results on real-life data sets show the superiority of the proposed method.  相似文献   

7.
Suppressed fuzzy c-means clustering algorithm (S-FCM) is one of the most effective fuzzy clustering algorithms. Even if S-FCM has some advantages, some problems exist. First, it is unreasonable to compulsively modify the membership degree values for all the data points in each iteration step of S-FCM. Furthermore, duo to only utilizing the spatial information derived from the pixel’s neighborhood window to guide the process of image segmentation, S-FCM cannot obtain satisfactory segmentation results on images heavily corrupted by noise. This paper proposes an optimal-selection-based suppressed fuzzy c-means clustering algorithm with self-tuning non local spatial information for image segmentation to solve the above drawbacks of S-FCM. Firstly, an optimal-selection-based suppressed strategy is presented to modify the membership degree values for data points. In detail, during each iteration step, all the data points are ranked based on their biggest membership degree values, and then the membership degree values of the top r ranked data points are modified while the membership degree values of the other data points are not changed. In this paper, the parameter r is determined by the golden section method. Secondly, a novel gray level histogram is constructed by using the self-tuning non local spatial information for each pixel, and then fuzzy c-means clustering algorithm with the optimal-selection-based suppressed strategy is executed on this histogram. The self-tuning non local spatial information of a pixel is derived from the pixels with a similar neighborhood configuration to the given pixel and can preserve more information of the image than the spatial information derived from the pixel’s neighborhood window. This method is applied to Berkeley and other real images heavily contaminated by noise. The image segmentation experiments demonstrate the superiority of the proposed method over other fuzzy algorithms.  相似文献   

8.
电站空预器积灰会严重影响机组运行经济性.提出加权模糊C均值聚类算法对空预器积灰程度进行监测,该方法计算多维样本中每一维数据的标准差,将其作为权重,计算样本与类心之间的加权欧式距离,降低模糊C均值聚类算法对离群点的敏感度.利用人工数据对该方法进行验证,结果表明,相比于传统模糊C均值聚类算法,提出的方法对离群点识别更加准确...  相似文献   

9.
This paper introduces a new method of clustering algorithm based on interval-valued intuitionistic fuzzy sets (IVIFSs) generated from intuitionistic fuzzy sets to analyze tumor in magnetic resonance (MR) images by reducing time complexity and errors. Based on fuzzy clustering, during the segmentation process one can consider numerous cases of uncertainty involving in membership function, distance measure, fuzzifier, and so on. Due to poor illumination of medical images, uncertainty emerges in their gray levels. This paper concentrates on uncertainty in the allotment of values to the membership function of the uncertain pixels. Proposed method initially pre-processes the brain MR images to remove noise, standardize intensity, and extract brain region. Subsequently IVIFSs are constructed to utilize in the clustering algorithm. Results are compared with the segmented images obtained using histogram thresholding, k-means, fuzzy c-means, intuitionistic fuzzy c-means, and interval type-2 fuzzy c-means algorithms and it has been proven that the proposed method is more effective.  相似文献   

10.
针对噪声图像模糊性的本质,提出了基于改进的直觉模糊核聚类的图像分割方法。采用直觉模糊集描述噪声图像包含的不确定性信息,将图像的灰度信息转换到直觉模糊域进行处理;将模糊核聚类拓展为直觉模糊核聚类,在图像的直觉模糊域进行聚类;通过高斯核函数和欧氏距离分别对像素8-邻域的灰度和空间信息进行建模,综合平衡灰度和空间信息对聚类的作用,并将其作为惩罚项加入到直觉模糊核聚类的目标函数中;通过梯度下降法,推导了迭代求解算法;通过典型的合成图像和自然图像分割实例,验证了所提算法的有效性和鲁棒性。  相似文献   

11.
Fuzzy c-means clustering with spatial constraints is considered as suitable algorithm for data clustering or data analyzing. But FCM has still lacks enough robustness to employ with noise data, because of its Euclidean distance measure objective function for finding the relationship between the objects. It can only be effective in clustering ‘spherical’ clusters, and it may not give reasonable clustering results for “non-compactly filled” spherical data such as “annular-shaped” data. This paper realized the drawbacks of the general fuzzy c-mean algorithm and it tries to introduce an extended Gaussian version of fuzzy C-means by replacing the Euclidean distance in the original object function of FCM. Firstly, this paper proposes initial kernel version of fuzzy c-means to aim at simplifying its computation and then extended it to extended Gaussian kernel version of fuzzy c-means. It derives an effective method to construct the membership matrix for objects, and it derives a robust method for updating centers from extended Gaussian version of fuzzy C-means. Furthermore, this paper proposes a new prototypes learning method and it obtains initial cluster centers using new mathematical initialization centers for the new effective objective function of fuzzy c-means, so that this paper tries to minimize the iteration of algorithms to obtain more accurate result. Initial experiment will be done with an artificially generated data to show how effectively the new proposed Gaussian version of fuzzy C-means works in obtaining clusters, and then the proposed methods can be implemented to cluster the Wisconsin breast cancer database into two clusters for the classes benign and malignant. To show the effective performance of proposed fuzzy c-means with new initialization of centers of clusters, this work compares the results with results of recent fuzzy c-means algorithm; in addition, it uses Silhouette method to validate the obtained clusters from breast cancer datasets.  相似文献   

12.
冯飞  刘培学  李丽  陈玉杰 《计算机科学》2018,45(Z6):252-254
医学图像由于具有复杂性,在对其进行图像分割时存在很大的不确定性,为了提高模糊c均值聚类算法(FCM)在处理医学图像分割时的性能,提出一种新的混合方法进行图像分割。利用FCM算法将图像像素分成均匀的区域,融合引力搜索算法,将改进的引力搜索算法纳入模糊c均值聚类算法中,以找到最优聚类中心,使模糊c均值聚类的适应度函数值最小,从而提高分割效果。实验结果表明,相对于传统的聚类算法,所提算法在分割复杂的医学图像方面更具有效性。  相似文献   

13.
提出了一种基于改进的模糊 C 均值聚类的模糊规则提取方法。然后基于所提取的模糊规则给出了一种分类算法,并利用 IRIS 数据对此分类算法进行了仿真测试。结果表明,该算法在训练祥本较少的情况下,仍能得到很好的分类效果,由此说明所提出的模糊规则生成方法有效。  相似文献   

14.
In this study a fuzzy c-means clustering algorithm based method is proposed for solving a capacitated multi-facility location problem of known demand points which are served from capacitated supply centres. It involves the integrated use of fuzzy c-means and convex programming. In fuzzy c-means, data points are allowed to belong to several clusters with different degrees of membership. This feature is used here to split demands between supply centers. The cluster number is determined by an incremental method that starts with two and designated when capacity of each cluster is sufficient for its demand. Finally, each group of cluster and each model are solved as a single facility location problem. Then each single facility location problem given by fuzzy c-means is solved by convex programming which optimizes transportation cost is used to fine-tune the facility location. Proposed method is applied to several facility location problems from OR library (Osman & Christofides, 1994) and compared with centre of gravity and particle swarm optimization based algorithms. Numerical results of an asphalt producer’s real-world data in Turkey are reported. Numerical results show that the proposed approach performs better than using original fuzzy c-means, integrated use of fuzzy c-means and center of gravity methods in terms of transportation costs.  相似文献   

15.
In this paper, we make an effort to overcome the sensitivity of traditional clustering algorithms to noisy data points (noise and outliers). A novel pruning method, in terms of information theory, is therefore proposed to phase out noisy points for robust data clustering. This approach identifies and prunes the noisy points based on the maximization of mutual information against input data distributions such that the resulting clusters are least affected by noise and outliers, where the degree of robustness is controlled through a separate parameter to make a trade-off between rejection of noisy points and optimal clustered data. The pruning approach is general, and it can improve the robustness of many existing traditional clustering methods. In particular, we apply the pruning approach to improve the robustness of fuzzy c-means clustering and its extensions, e.g., fuzzy c-spherical shells clustering and kernel-based fuzzy c-means clustering. As a result, we obtain three clustering algorithms that are the robust versions of the existing ones. The effectiveness of the proposed pruning approach is supported by experimental results.  相似文献   

16.
提出一种针对位置指纹的模糊核c-means聚类算法.将位置指纹归结为一种服从正态分布的区间值数据以反映接入点信号强度采样值的不确定性,通过区间中值和大小确定的正态分布函数将位置指纹映射为特征空间中的一点,并在该特征空间中采用基于核方法的模糊c-means算法对其进行聚类.通过ZigBee定位实验表明,该方法对于位置指纹的分类效果明显好于基于信号强度平均值的c-means聚类,可在保证定位精度的前提下有效降低定位的计算量.  相似文献   

17.
华婷婷  肖铁军 《微计算机应用》2007,28(11):1164-1168
提出了一种基于模糊C-means聚类法的矢量量化,并将其用于语音特征的矢量量化。从语音信号中提取12阶MFCC倒谱系数作为待分群样本的矢量数据,有效地降低数据量及计算量,并可以避免杂信的不良影响。且实验得到的码本分布合理,没有空类,表明了该量化方法对语音识别很有效。  相似文献   

18.
改进了基于网格和密度的模糊c均值聚类初始化方法,提出了基于网格和密度权值的模糊c均值算法.该算法在参数初始化时用网格代表点代替原算法的网格凝聚点,同时考虑到在样本空间中处于不同位置的样本点对聚类的影响不同,把密度权值作为系数加入到模糊c均值聚类算法中.实验结果表明,提出的算法对提高算法的效率是有效的.  相似文献   

19.
Fuzzy clustering is an important problem which is the subject of active research in several real-world applications. Fuzzy c-means (FCM) algorithm is one of the most popular fuzzy clustering techniques because it is efficient, straightforward, and easy to implement. However, FCM is sensitive to initialization and is easily trapped in local optima. Particle swarm optimization (PSO) is a stochastic global optimization tool which is used in many optimization problems. In this paper, a hybrid fuzzy clustering method based on FCM and fuzzy PSO (FPSO) is proposed which make use of the merits of both algorithms. Experimental results show that our proposed method is efficient and can reveal encouraging results.  相似文献   

20.
In this paper, we propose an improvement method for image segmentation using the fuzzy c-means clustering algorithm (FCM). This algorithm is widely experimented in the field of image segmentation with very successful results. In this work, we suggest further improving these results by acting at three different levels. The first is related to the fuzzy c-means algorithm itself by improving the initialization step using a metaheuristic optimization. The second level is concerned with the integration of the spatial gray-level information of the image in the clustering segmentation process and the use of Mahalanobis distance to reduce the influence of the geometrical shape of the different classes. The final level corresponds to refining the segmentation results by correcting the errors of clustering by reallocating the potentially misclassified pixels. The proposed method, named improved spatial fuzzy c-means IFCMS, was evaluated on several test images including both synthetic images and simulated brain MRI images from the McConnell Brain Imaging Center (BrainWeb) database. This method is compared to the most used FCM-based algorithms of the literature. The results demonstrate the efficiency of the ideas presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号