首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
R. Wands   《低温学》2007,47(11-12):607
The Fermilab TQC magnets are Nb3Sn technological quadrupoles based on the collar-yoke-skin mechanical structure. These magnets, with an aperture of 90 mm, have a design gradient in excess of 200 T/m. In operation the conductor is subjected to forces which tend to pull it away from the poles and endparts to which it is bonded. Given the implications of bond failure for quench initiation, it is of interest to simulate the behavior of these interfaces. The ANSYS general purpose finite element program is used to perform both the magnetic and structural analyses. Interface elements between bonded parts are monitored during assembly, cool down, and excitation, and the birth–death capability of the program is applied to remove from the solution those portions of the interface which experience a tensile stress in excess of a presumed bond failure stress. The cracking of previously bonded interfaces can be tracked graphically over the range of operation. Emphasis will be placed on the details of the magnetic simulation, the implementation of various interface conditions, and the effects (and shortcomings) of material property models.  相似文献   

2.
The capability of the cost-effective process of continuous wrapping to prepare tantalum barrier for Nb3Sn multifilamentary wire is investigated in this paper. By eliminating the length limit of inserting a subelement into the expensive tantalum tube, tantalum sheet is wrapped with 20% overlap onto subelement. Then an assembly of 19 restacks was drawn down to the final diameter with 0.8 mm. Two batches of such 19 filamentary assemblies were packed into a copper tube with round and hexangular restacks, respectively. The result has manifested that this continuous wrapping technique can be used to get an intact and continuous tantalum barrier.  相似文献   

3.
A Nb3Sn composite conductor with ≈ 10 000 submicron diameter filaments has been manufactured using the external diffusion process. A.c. losses were greatly reduced by the use of a fine filament size (0.53 μm, design value), a tight twist pitch (0.87 mm) and a small wire diameter (0.153 mm) with a bronze matrix. In an a.c. field with a frequency of 50 Hz and amplitude of 2.0 T, the hysteresis loss and the coupling current loss were observed to be 465 kW m−3 and 26 kW m−3, respectively. A triplex conductor was constructed by cabling three strands at a twisting pitch of 3 mm, and a small coil was wound from this cable (i.d. 11 mm, o.d. 33 mm, axial length 19 mm). With d.c. the coil generated a field of 1.3 T at the critical current, lc of 37.4 A. When the coil was operated at 50 Hz, with an exciting current of Ic, the observed loss averaged over the windings was 240 kW m−3. The quenching current for 50 Hz operation was 53 A at a maximum field of 1.8 T. This was considerably higher than the critical values under d.c. conditions. Preliminary studies have shown that, if this conductor is used in superconducting armature windings of rotating machines, economical benefits are obtained compared with the use of conventional armatures.  相似文献   

4.
A process continuous wrapping tantalum barrier has been developing and investigated in this paper. By eliminating the need for inserting expensive tantalum tube, barrier is applied to unlimited piece length prior restack. A tantalum barrier with 20% overlap was wrapped onto subelements. Then 18-filament Nb3Sn plus 1 copper core restack billet was successfully drawn down to wire with 0.84-mm diameter. The longitudinal and cross-sectional images revealed most of barriers were continuous and intact but some disrupted. So, we are still working on the optimization of manufacturing process.  相似文献   

5.
Several types of reinforced Nb3Sn wires have been developed to prevent reduction of superconducting properties by applying a strong electromagnetic force. To fabricate a cryocooled magnet using those reinforced wires, we experimentally measured the minimum quench energy (MQE) under cryocooled conditions of some reinforced Nb3Sn wires. As a result, it became clear that thermal stability expressed as MQE was controlled by the temperature margin between the temperature of the operating condition and the transition temperature from superconductivity to normal. Using the FEM analysis, it was realized that the cause of the decline in thermal stability for the reinforced wires was the low thermal conductivity of the reinforced materials.  相似文献   

6.
A new type of large-scale Nb3Sn conductor was developed that has an aluminum-alloy jacket to support an electromagnetic force. The manufacturing process of the conductor has a unique feature, in which the jacketing process is performed after a reaction heat treatment of the Nb3Sn cable. This enables the conductor to have a high critical current, because the thermal strain of the Nb3Sn filaments is decreased. Critical current measurements using a short conductor sample confirmed the expected high performance.  相似文献   

7.
Magnetization, AC loss, χDC and deff were measured for several designs of rod-in-tube based internal-Sn Nb3Sn type superconducting multifilamentary strands. Two kinds of subelement geometries were used in strand construction. The first had the standard annular Nb/Cu ring surrounding a Sn source; the second was similar but included an internal split intended to reduce magnetization and loss. Strands with 18 and 36 subelements were measured, at strand diameters of 0.5-0.8 mm. Optical, SEM, and EDS measurements were performed on these samples; average radii are reported and physical barrier integrity is found to be good. The magnetizations of these structures were analyzed in terms of a deff parameter, in this case calculated for annular structures. Analytical and numerical results of these calculations are presented. It was found that in general annular structures should be expected to have deff values somewhat larger than the subelement diameter; the value of this enhancement is reported. Also, the effect of subelement splitting on deff and magnetization was calculated. The results of these calculations are compared to the experimentally measured results. Reductions in deff due to subelement splitting are compared to direct, low-field susceptibility measurements. Magnetization values are seen to be nearly uniformly lower in the split subelement strands, and this leads in some but not all cases to significantly lower deff values. Possible reasons for these discrepancies are discussed.  相似文献   

8.
Calorimetric measurements of AC loss have been performed on Rutherford cables wound with NbTi, Nb3Sn, and Bi:2212/Ag strands, respectively. For the NbTi cables, various strand coatings had been applied, while for the Nb3Sn and Bi:2212/Ag cables the strand surfaces were just bare Cu or Ag, respectively. Most of the cables contained resistive cores: ribbons of kapton or titanium (NbTi cables), stainless steel (NbTi and Nb3Sn cables), and nichrome-80 (Bi:2212/Ag cables). In all cases the cores were found to lead to a strong suppression of the face-on (field normal to the broad cable face) coupling current loss; to such an extent that even the Bi:2212/Ag cables, which would otherwise be severely cross-sintered, evinced acceptable coupling loss. For most of the cables side-by-side interstrand contact resistances have been calculated. An `effective interstrand contact resistance', R⊥,eff, has been defined, and an expression devised to enable its value in different-size cables to be converted to that of a `standard reference cable', R⊥,eff.,ref., for the purpose of intercomparison.  相似文献   

9.
The increasing need for high field magnetic devices has focused attention on filamentary Nb3Sn conductors, whose critical data are superior to NbTi conductors. To choose the suitable operating parameters and to determine the stability margin of magnet systems, it is very important to know the effect of temperature and magnetic field on the superconducting properties, especially on the critical current. Up to now, for design calculation, the so-called “Summers model” was assessed theoretically on experimental data obtained by Spencer et al., (The temperature and magnetic field dependence of superconducting critical current densities of multiinflammatory Nb3Sn and NbTi composite wires. IEEE Trans Mag, Mag-15 (1979) 76) and Suenaga et al., Superconducting critical-current densities of commercial multifilamentary Nb3Sn(Ti) wires made by the bronze process. Cryogenics (1985) 25, 123). Apart these very useful preliminary experimental data, very little has been done on the very different industrial strands which are now produced in the industry. Industrial Nb3Sn strands are generally tested and checked only at 4.2 K and their operating design temperature is often very different, sometimes around 6 K. It is now urgent to validate the model and to confirm that the data taken up to now in the design calculations are conservative.  相似文献   

10.
An internal-tin route Nb3Sn superconducting wire that has both remarkably low hysteresis loss (Qh) and high critical current density (Jc) was developed according to a new design idea. The wire was constructed by arranging the filaments in a radial layout, enlarging the outer filaments along the radial direction, narrowing the filament spacing in the radial direction intentionally and enlarging the filament spacing in tangential direction. Thus, the electromagnetic coupling among the filaments in tangential direction due to the bridging and/or proximity effect was suppressed without decreasing the volume fraction of Nb. As a result, excellent properties such as Jc(12 T) = 1.15 × 103 A/mm2 and Qh = 301 mJ/cm3 (for 1 cycle of B = ±3 T) were obtained. We also evaluated the transition temperature (Tc) and upper critical field (Bc2) of the wire. The values for Tc and Bc2 were 17.3 K and 24.1 T, respectively, which were much better than those of usual internal-tin route wires. Moreover, electron probe micro-analyses confirmed that the good Tc and Bc2 were the result of the qualitative improvement of the Nb3Sn compound based on the effects of arranging the Nb filaments radially, increasing the ratio of Sn-to-Nb and shortening the diffusion length for Sn. This wire is promising for use with conduction-cooled high-field magnets, in which there is a need to decrease the load of the cryocooler, and also for the strands of fusion coils.  相似文献   

11.
Langanite (La3Ga5.5Nb0.5O14, LGN) and its isomorphs are a few piezoelectric materials which have the unique temperature compensation and piezoelectric properties. But the high Ga2O3 content makes them very expensive and limits their applications. We reported a new langanite-type compound La3Al5.5Nb0.5O14 (LAN) which has the advantage of no Ga2O3 content. Chemically homogeneous La3Al5.5Nb0.5O14 sol was synthesized using La (NO3)3·6H2O, Al (NO3)3·9H2O and niobium citrate as starting materials. Single-phased LAN powder was prepared by decomposition of a citrate polymer precursor and subsequent reactions at high temperatures. TG-DTA, XRD and FTIR were employed to investigate the transformation process of gel to LAN powder. The results showed that, after calcination at 900 °C, pure La3Al5.5Nb0.5O14 polycrystalline powder with a narrow particle size distribution was obtained, which has the same structure with La3Ga5.5Nb0.5O14.  相似文献   

12.
The sintering behavior and dielectric properties for perovskite Ag(Nb0.8Ta0.2)O3 ceramic with Sb2O5 doping was explored. A small amount of Sb2O5 (2.5 wt.%) led to high densification at temperatures < 1060 °C. The dielectric constant increased and the temperature coefficient decreased with increasing concentration of Sb2O5, and the dielectric constant reached 673, combined with a low temperature coefficient of 147 ppm/°C, and dielectric loss of 0.0044 (at 1 MHz) for the sample with 3.5 wt.% Sb2O5 sintered at 1080 °C.  相似文献   

13.
In situ composites of TiAl reinforced with Al2O3 particles are successfully synthesized from an elemental powder mixture of Ti, Al and Nb2O5 by the hot-press-assisted reaction synthesis (HPRS) method. The as-prepared composites are mainly composed of TiAl, Al2O3, NbAl3, as well as small amounts of the Ti3Al phase. The in situ formed fine Al2O3 particles tend to disperse on the matrix grain boundaries of TiAl resulting in an excellent combination of matrix grain refinement and uniform Al2O3 distribution in the composites. The Rockwell hardness and densities of TiAl based composites increase gradually with increasing Nb2O5 content, and the flexural strength and fracture toughness of the composites have the maximum values of 634 MPa and 9.78 MPa m1/2, respectively, when the Nb2O5 content reaches 6.62 wt.%. The strengthening mechanism was also discussed.  相似文献   

14.
Orthorhombic structure FeF3 was synthesized by a liquid-phase method. The FeF3/MoS2 for the application of cathode material of lithium-ion battery was prepared through mechanical milling with molybdenum bisulfide. The structure and morphology of the FeF3/MoS2 were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The electrochemical behavior of FeF3/MoS2 was studied by charge/discharge, cyclic voltammetry and electrochemical impedance spectra measurements. The results show that the prepared FeF3/MoS2 was typical orthorhombic structure, uniform surface morphology, better particle-size distribution and excellent electrochemical performances. The initial discharge capacity of FeF3/MoS2 was 169.6 mAh·g− 1 in the voltage range of 2.0-4.5 V, at room temperature and 0.1 C charge-discharge rate. After 30 cycles, the capacity retention is still 83.1%.  相似文献   

15.
分析了微波烧结的原理和特点,利用COMSOL Multi-physics模拟软件对矩形微波炉进行了仿真模拟,研究了微波烧结正极材料LiCo_(1/3)Ni_(1/3)Mn_(1/3)O_2时电磁场与温度场的分布,测量了粉末样品LiCo_(1/3)Ni_(1/3)Mn_(1/3)O_2的介电常数,并与模拟结果相对照.研究表明:微波在烧结LiCo_(1/3)Ni_(1/3)Mn_(1/3)O_2样品时,炉腔内电磁场的分布受到影响,微波炉内表面的电场强度减弱;材料内部温度场的分布不均匀,材料的下半部分温度较高;同时,在仿真模拟计算过程中,求得LiCo_(1/3)Ni_(1/3)Mn_(1/3)O_2在微波中烧结到不同温度时的能量损耗,根据李赫德涅凯法则计算出其对应的相对介电常数,发现在20~620℃,相对介电常数随温度的上升而变大.根据实验测得的复合介电常数,求出对应温度点LiCo_(1/3)Ni_(1/3)Mn_(1/3)O_2的相对介电常数.利用Origin对仿真模拟计算和实验求得的两组相对介电常数数据进行拟合对比,发现实验求得的LiCo_(1/3)Ni_(1/3)Mn_(1/3)O_2的相对介电常数与仿真模拟计算所得数据趋势吻合.  相似文献   

16.
This paper investigated the microstructure and dielectric properties of BaTiO3-Pb(Sn, Ti)O3 system ceramics. The Curie point of BaTiO3 is 130 °C. When the temperature is higher than 130 °C, the dielectric constant of BaTiO3 drops severely according to Curie-Weiss law. Pb(Ti, Sn)O3(PTS) was selected to compensate the dielectric constant doping of BaTiO3 since it has high Curie temperature (Tc) point that is about 296 °C. The Curie temperature (Tc) point of BaTiO3 was broadened and shifted to higher temperature because of the doping of PTS, so the temperature coefficient of capacitance (TCC) curves of the ceramics based on BaTiO3 was flattened. When 2 wt% Pb(Ti0.55Sn0.45)O3 was added, the sample showed super dielectric properties that the dielectric constant was >1750 at 25 °C, dielectric loss was lower than 2.0% and TCC was <±10% from −55 °C to 200 °C. Therefore the materials satisfied EIA X9R specifications.  相似文献   

17.
The luminescence lifetime of the 0.01 mol.%-0.1 mol.% Er3+- and 0–20 mol.% Y3+-codoped Al2O3 powders prepared at a sintering temperature of 900°C in a non-aqueous sol-gel method has been investigated to explore the enhanced mechanism of photoluminescence properties of the Er3+-doped Al2O3 by Y3+ codoping. For the 0.1 mol.% Er3+-Y3+-codoped Al2O3 powders, the measured lifetime of Er3+ gradually increases with increasing Y3+ concentration. Consequently, codoping with 20 mol.% Y3+ leads to an increase in the measured lifetime from 3.5 to 5.8 ms. By comparing the measured lifetime for different Er3+ concentrations in the Al2O3 powders, the radiative lifetime of both the Er3+-doped and the Er3+-Y3+-codoped Al2O3 powders is estimated to be about 7.5 ms. Infrared absorption spectra indicate that Y3+ codoping does not change the-OH content in the Er3+-Y3+-codoped Al2O3 powders. The prolonged luminescence lifetime of the 4I13/2 level of Er3+ in Er3+-doped Al2O3 powders by Y3+ codoping is ascribed to the decrease in the energy transfer rate between the Er3+ ions and the Er3+ and -OH, respectively, due to the suppressed interaction between Er3+ ions.  相似文献   

18.
The electrochemical performance of LiMn2O4 is improved by the surface coating of nano-Li3PO4 via ball milling and high-temperature heating. The Li3PO4-coated LiMn2O4 powders are characterized by X-ray diffraction and high-resolution transmission electron microscopy (HRTEM). At 55 °C, capacity retention of 85% after 100 cycles was obtained for Li/Li3PO4-coated LiMn2O4 electrode at 1C rate, while that of pristine sample was only 65.6%. The Li/Li3PO4-coated LiMn2O4 electrode also showed improved rate capability especially at high C rates. At 5C-rates, the delivered capacities of pristine and Li3PO4-coated LiMn2O4 electrodes were 80.7 mAh/g and 112.4 mAh/g, respectively. The electrochemical impedance spectroscopy (EIS) indicates that the charge transfer resistance for Li/Li3PO4-coated LiMn2O4 cell was reduced compared to Li/LiMn2O4 cell.  相似文献   

19.
20.
Nanometer Y-substituted nickel hydroxide was prepared by supersonic co-precipitation method with Na2CO3 as a buffer and NiCl2 as a nickel source. The crystal structure, morphology, particle size distribution and electrochemical performance affected by the buffer (Na2CO3) content and Ni2+ concentration are characterized. The results indicate most of the samples are co-existence with α and β phases and the proportion of α-Ni(OH)2 increases with the increase of Na2CO3, but decreases with the increase of Ni2+ concentration. The primary particles of samples are nanometer particles and the shape of primary particles transform from acicular to quasi-spherical with increasing Na2CO3 content, but converse process for the increase of Ni2+ concentration. The average particle size decreases initially and then increases. Complex electrodes were prepared by mixing 8 wt.% nickel hydroxides with commercial micro-size spherical nickel. The discharge capacities of samples increase initially and then decrease with increasing Na2CO3 content or decreasing Ni2+ concentration. When Na2CO3 content is 0.08 g and Ni2+ concentration is 0.2 mol/L, the sample has better electrochemical performance, such as larger discharge capacity (316.3 mAh/g at 0.2 C rate), lower charge voltage and higher discharge plateau, than those of other samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号