首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
K. Tang  B. Kong 《低温学》2004,44(5):287-291
After the modifications of jacket type water coolers and stacks, and the optimizations of the openings of orifice and double inlet valves, a refrigeration temperature as low as 115.4 K has been achieved by a thermoacoustically driven pulse tube refrigerator. By operating the double inlet valve of the pulse tube refrigerator, the onset temperature of the thermoacoustic system decreases from 550 to 340 °C. It provides the possibility of utilizing the low-grade heat energy.  相似文献   

2.
级间热桥的传热特性对于热耦合型多级脉管制冷机的制冷温度和制冷效率均具有重要影响。采用铜丝编织带和铜箔连接的3种热桥进行对比实验,研究了热桥的传热特性对热耦合二级Stirling型脉管制冷机性能的影响。采用改进后的热桥,以氦气作为工质,在总输入电功率为400W,以及优化的工作频率和充气压力条件下,热耦合二级Stirling型脉管制冷机实现了12.96K的无负荷制冷温度,并可同时在23.1K和100.8K分别提供0.4W和6W的制冷量。  相似文献   

3.
A nodal analysis method for simulating inertance tube pulse tube refrigerators is introduced. The energy equation, continuity equation, momentum equation of gas, energy equation of solid are included in this model. Boundary condition can be easily changed to enable the numerical program calculate thermal acoustic engines, inertance tube pulse tube refrigerators, double inlet pulse tube refrigerators, and others. Implicit control volume method is used to solve these equations. In order to increase the calculation speed, the continuity equation is changed to pressure equation with ideal gas assumption, and merged with momentum equation. Then the algebraic equation group from continuity and momentum equation becomes one group. With this numerical method, an example calculation of a large scale inertance tube pulse tube refrigerator is shown.  相似文献   

4.
热耦合二级Stirling型脉管制冷机的性能研究   总被引:1,自引:2,他引:1  
建立热耦合二级Stirling型脉管制冷机实验装置.通过实验,系统研究了交变流动工质的工作频率和平均工作压力对热耦合二级Stirling型脉管制冷机性能的影响,详细报道并分析讨论了实验结果.以氦气作为工质,在优化工作频率和平均工作压力条件下,热耦合二级Stirling型脉管制冷机获得了13.52 K的无负荷制冷温度.  相似文献   

5.
In a Stirling-type pulse tube refrigerator (PTR), the pulse tube volume affects the dynamic behavior of a linear compressor as well as the cooling performance of PTR. In this study, PTRs which have different pulse tube volume are tested and simulated. The simulation code is verified with the experimental measurement of piston displacement, pressure wave, input power and cooling capacity. And then, the power transfer from the electric power input to the cooling capacity is explained with the simulation results. The smaller pulse tube increases the resonant frequency of a linear compressor and suppresses the piston motion because it imposes larger gas spring effect and also larger gas damping effect to the piston. The smaller one allows larger power transfer from electric power to expansion PV work despite the smaller piston displacement, but shows less cooling capacity due to larger thermal losses.  相似文献   

6.
G.Q LuP Cheng 《低温学》2002,42(5):287-293
An experimental investigation has been carried out on dynamical pressures of the viscous compressible flow oscillating at different locations in a Gifford-McMahon (G-M) type pulse tube refrigerator operating at cycle-steady states. Measurements show that the oscillating amplitude of the pressure was largest at the hot end of the regenerator while the cycle-averaged pressure was the largest in the reservoir. The latter characteristics can be explained based on a cycle-averaged and cross-sectional averaged of the governing equations for a compressible viscous oscillating flow. The reason why the cycle-averaged pressure of the compressible flow oscillating at low frequencies in a tube increases from the wave generator toward the reservoir is analyzed. In addition, the effect of the cycle-averaged pressure on the refrigeration performance is discussed, which can be used to explain why the system with proper asymmetric charging and discharging periods has a better performance than a symmetric one in a G-M type pulse tube refrigerator.  相似文献   

7.
A 300 Hz pulse tube cryocooler (PTC) driven by a three-stage traveling-wave thermoacoustic heat engine (TSTHE) has been proposed and studied in this paper. In the configuration, three identical thermoacoustic heat engine units are evenly incorporated in a closed traveling-wave loop, in which three pulse tube cryocoolers are connected to the branch of each thermoacoustic heat engine. Compared with the conventional thermoacoustic heat engine which involves a traveling-wave loop and a long resonator, it has advantages of compact size and potentially high thermal efficiency. A TSTHE–PTC system was designed, optimized and studied in detail based on the thermoacoustic theory. Firstly, numerical simulation was conducted to design the system thus the optimum structure parameters of the system were obtained. With the operating condition of 4 MPa mean pressure and high working frequency, a cooling power of 7.75 W at 77 K and an overall relative Carnot efficiency of 11.78% were achieved. In order to better understand the energy conversion characteristics of the system, distributions of key parameters such as acoustic work, phase difference, dynamic pressure, volume flow rate and exergy loss were presented and discussed. Then, the coupling mechanism of the system was investigated. In addition, influence of coupling position on the system performance was further studied.  相似文献   

8.
J.Y. Hu  E.C. Luo  W. Dai 《低温学》2005,45(7):523-527
Obtainable lowest temperature of a thermoacoustically-driven pulse tube cooler is generally limited by the pressure ratio provided by the thermoacoustic engine with helium as working gas. It is also known that a thermoacoustic engine filled with nitrogen can generally provide much larger pressure ratio and lower frequency than the same engine filled with helium. Here we introduce an innovative system configuration which uses an elastic membrane as the interface between the thermoacoustic engine subsystem and the pulse tube cooler subsystem. The membrane can transport acoustic work from the engine to the cooler, and meanwhile separate the working gases used in respective subsystems. Through this way, it is possible for the engine to operate with nitrogen to provide larger pressure ratio and more suitable frequency for the pulse tube cooler which can still use helium as the working gas. To test this idea, a thermoacoustically-driven pulse tube cooler was built. With the innovative configuration, the pulse tube cooler reached a lowest temperature of 139 K. On the other hand, without the membrane, the PTC only achieved a lowest temperature of 186 K when using nitrogen and 145 K with helium for both the PTC and the engine.  相似文献   

9.
Shaowei Zhu  Zhongqi Chen 《低温学》1998,38(12):1213-1216
An integration formula of enthalpy flow rate along a pulse tube in pulse tube refrigerators is described on the assumption of sinusoidal mass flow rate and sinusoidal pressure fluctuation. For ideal double inlet and ideal orifice pulse tube with helium as working medium, it is simplified to a polynomial formula. Polynomial formulas for roughly evaluating the volume of the pulse tube in ideal double inlet and ideal orifice pulse tube refrigerators are also given.  相似文献   

10.
Jeheon Jung 《低温学》2005,45(5):386-396
This paper describes simple analysis of the pulse tube expansion efficiency. Four dimensionless operating parameters of pulse tube refrigerator are needed to express the enthalpy flow at the cold end of the pulse tube. In this analysis, the expansion efficiency is calculated from the ratio of the diathermic enthalpy flow (non-zero gas-to-wall heat transfer) to the adiabatic enthalpy flow (zero gas-to-wall heat transfer). The analytic procedure is carried out under several simplified assumptions, and the resultant expression is remarkably simple and useful. The optimal design of pulse tube refrigerator can be greatly assisted by the enthalpy flow calculation with four dimensionless parameters introduced in this paper.  相似文献   

11.
Wei Dai  Jianying Hu  Ercang Luo 《低温学》2006,46(4):273-277
It is well known that the pressure wave should lead the volume flow rate at the ambient end of the pulse tube for a high-efficiency operation of a pulse tube cooler. Inertance tube can provide such a phase relationship without DC flow problem. However, inertance tube is always connected with a reservoir in previous literatures. Through theoretical calculation here, inertance tube without a reservoir can also provide a rather large phase-leading effect. Thus phasor diagram is used to analyze the relationship between phase-leading requirement and the pulse tube geometry. Roughly speaking, a larger void volume of pulse tube would require a larger phase-leading effect. Comparison experiments are also done on a thermoacoustically-driven pulse tube cooler. With i.d.2 mm tube as inertance tube, the tube without reservoir yields close results in terms of lowest temperature to that of the tube with reservoir and both give much better performance than that of an orifice with reservoir. Finally, the advantages of using inertance tube without reservoir are given.  相似文献   

12.
J.Y. Hu  W. Dai  X.T. Wang  Y. Huang 《低温学》2010,50(9):603-607
Thermoacoustic theory is a powerful tool to understand the working mechanism of regenerative thermodynamic systems. In this paper, a modified thermoacoustic model is employed to design three single-stage Stirling-type pulse tube cryocoolers. The first one (PTC-10) is designed with in-line configuration and the second one (CPTC-10) is designed with co-axial configuration. Both of them are able to provide about 10 W cooling power at 77 K with a relative Carnot efficiency of about 18.6%. The third one (PTC-20), designed with in-line configuration, has a twice cross section area of the PTC-10. It can provide more than 20 W cooling power at 77 K with a relative Carnot efficiency of 22%.  相似文献   

13.
The pulse tube cooler (PTC) driven by a thermoacoustic engine can completely eliminate mechanical moving parts, and then achieves a simpler and more reliable device. A Stirling thermoacoustic heat engine has been constructed and tested. The heat engine can generate a maximal pressure ratio of 1.19, which makes it possible to drive a PTC and get good performance. Frequency is one of the key operating parameters, not only for the heat engine but also for the PTC. In order to adapt to the relatively low design frequency of the PTC, the operating frequency of the thermoacoustic heat engine was regulated by varying the length of the resonance tube. Driven by the thermoacoustic engine, a single stage double-inlet PTC obtained the lowest refrigeration temperature of 80.9 K with an operating frequency of 45 Hz, which is regarded as a new record for the reported thermoacoustically driven refrigerators.  相似文献   

14.
A cryogenic refrigeration system is one of the indispensable components for cooling superconducting motor or generator. Among various configurations of cryogenic refrigeration system, the on-board refrigeration system is considered to be attractive for compactness and small heat leak. In order to turn this concept into reality, we focus on two essential points; development of the specific structure for on-board refrigeration and optimal design of the refrigerator. Since the on-board refrigeration system should not create unbalanced vibration, the inline Stirling-type pulse tube refrigerator is considered as a good candidate and more concrete and efficient structure is developed under the design constraints. The dynamic absorber is used to maintain the dynamic stability of the single acting linear compressor. To increase thermal Carnot efficiency with the on-board Stirling-type pulse tube refrigerator, slit-type heat exchangers are implemented and flow straighteners are carefully designed by the three-dimensional CFD simulation. The overall configuration of the Stirling-type pulse tube refrigerator is designed and fabricated by the optimal process. The present on-board refrigerator has the cooling capacity of 7 W at 59.5 K with the Carnot efficiency of 10.9%. According to these experimental results, the pulse tube refrigerator as the on-board refrigeration system possesses a sufficient thermal efficiency despite the restricted design configuration. The on-board refrigeration is considered as a useful method for cooling HTS superconducting motor.  相似文献   

15.
The cooling of electronic components is of great interest to improve their capabilities, especially for CMOS components or infrared sensors. The purpose of this paper is to present the design and the optimization of a miniature double inlet pulse tube refrigerator (DIPTR) dedicated to such applications. Special precautions have to be considered in modeling the global functioning of small scale DIPTR systems and also in estimating the net cooling power. In fact, thermal gradients are greater than those observed in normal scale systems, and moreover, because of the small dimensions of ducts (diameter), the pulse tube cannot be assumed to be adiabatic. Hence thermal heat conduction phenomena must be considered. Besides dead volumes introduced by junctions and capillaries cannot be neglected any more in front of the volume of the gas tube itself. The hydrodynamic and thermal behaviors of the cooler are predicted by means of two different approaches: a classical thermodynamic model and a model based on an electrical analogy. The results of these analysis are tested and criticized by comparing them with experimental data obtained on a small commercial pulse tube refrigerator.  相似文献   

16.
A numerical study is reported here for the investigation of the fundamental flow and heat transfer processes found in an orifice type pulse tube refrigerator (OPTR). The OPTR is driven by a cyclically moving piston at one end of the system with helium as the working fluid. The regenerator and the various heat exchangers are modeled as porous media and a thermal non-equilibrium model is applied in these regions. The system is studied for different operating frequencies of the driver piston. The simulations reveal interesting steady-periodic flow patterns that develop in the pulse tube due to the fluctuations caused by the piston and the presence of the inertance tube. The predicted secondary-flow recirculation patterns in the pulse tube are found to affect the OPTR performance. When the secondary-flow patterns are well-developed, they help isolate the cold and hot ends of the pulse tube and create a thermal buffer zone at the center of the pulse tube, enhancing the performance of the OPTR.  相似文献   

17.
Secondary flow in an inclined orifice pulse tube refrigerator at typical inclination angles of 0-180° was studied by using a smoke-wire flow visualization technique. It was revealed that the secondary flow formed a unicellular convective flow in the pulse tube and had two flow patterns depending on the angle. This dependence of flow pattern on the inclination angle is well explained by the superposition of gravity-driven convective flow on acoustic streaming. Even if the cold end was lower than the hot end, the gravity-driven convective flow occurred and the secondary flow was affected by gravity.  相似文献   

18.
K. Wang  Q.R. Zheng  W.S. Lin  A.Z. Gu 《低温学》2006,46(9):643-647
In order to simplify the structure of the cold end of the pulse tube refrigerator (PTR) and have a better utilization of the cold energy of the system, a single stage four-valve pulse tube refrigerator (FVPTR) with a ‘L’ type pulse tube structure and two orifice valves at the hot end of pulse tube has been constructed. Verification experiments show that a two-orifice valve structure gives different adjustments to the gas flow rate of the hot end of the pulse tube than that of the one-orifice valve structure, a lowest temperature of 72 K was obtained at a frequency of 2.5 Hz under a system average pressure of 1.6 MPa with 200 mesh bronze screens as regenerator material, 20 mesh copper screens as stuffing material of heat exchanger. Due to the difficulty in manufacturing the thin ‘L’ type pulse tube, the wall thickness of the pulse tube in the experiment is relatively bigger than that of the ordinary pulse tube, which resulted in relatively big system loss and affected the minimum temperature of the system to a certain degree.  相似文献   

19.
This research paper focuses on the performance prediction and its validation via experimental investigation of a Stirling-type pulse tube refrigerator (PTR) equipped with a cold linear compressor. When the working gas is compressed at cryogenic temperature, the acoustic power (PV power) can be directly transmitted through the regenerator to the pulsating tube without experiencing unnecessary precooling process. The required PV power generated by the linear compressor, furthermore, can be significantly diminished due to the relatively small specific volume of the working gas at low temperature. The PTR can reach lower temperature efficiently with higher heat lift at the corresponding temperature than other typical single-stage Stirling-type PTRs. Utilizing a cryogenic reservoir as a warm end and regulating the entire operating temperature range of the PTR will enable a PTR to operate efficiently under space environment.In this research, the experimental validation as a proof of concept was carried out to demonstrate the capability of PTR operating between 80 K and 40 K. The linear compressor was submerged in a liquid nitrogen bath and the lowest temperature was measured as 38.5 K. The test results were analyzed to identify loss mechanisms with the simple numerical computation (linear model) which considers the dynamic characteristics of the cold linear compressor with thermo-hydraulic governing equations for each of sub components of the PTR. All the mass flows and pressure waves were assumed to be sinusoidal.  相似文献   

20.
介绍了单级G-M型同轴脉冲管制冷机,双向进气方式采用两个方向相反的阀门并行布置.在压缩机输入功率为6 kW的条件下,该制冷机获得了18.1 K的无负荷最低制冷温度,这是目前单级G-M型同轴脉冲管制冷机所能达到的最低无负荷制冷温度,30 K 时的制冷量为12 W.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号