首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
用有限时间热力学方法分析实际隐态制冷装置性能,导出了恒温和变温热源条件下实际闭式回热式布雷顿制冷循环制冷率与压力比和制冷系数与压力比之间的解析关系。考虑了不可逆性包括高,低温侧换热器和回热器的不可逆传热损失,压缩机和膨胀机中的非等熵压缩和膨胀损失,以及管路系统中的压力损失,通过优化两个换热器和回热器之间的热导率分配或传热面积分配可得循环最优性能,由数值算例给出了各项损失对循环制冷率和制冷系数的影响。  相似文献   

2.
The VM refrigerator, known as heat driven refrigerator, is one kind of closed-cycle regenerative refrigerator. There are some losses in VM refrigerator, but the losses in regenerator are the main loss when the refrigeration temperature is below 100 K. This paper present one method to calculate the pressure drop loss in the regenerator, which is one main part loss in the regenerator. The pressure drop loss in the regenerator will decrease the refrigeration capacity in two aspects. On the one hand, due to the friction pressure drop in the regenerator will be converted into heat that causes reduced the refrigeration capacity. On the other hand, the pressure drop in the regenerator will decrease the pressure ratio in cold end. From a practical standpoint, this calculation method was used for analysis one VM refrigerator proposed by Zhou in 1984. The results showed that the results by using this method are very close to the experimental results in three temperature points.  相似文献   

3.
空气循环制冷由于其性能低下,影响了其在普通空调中的应用,如何提高空气循环制冷系统的性能一直是研究的焦点。本文主要针对双级压缩空气循环制冷系统的特性与优化进行了研究,分析了系统的流程,建立了热力学模型;结果表明:转动部件的等熵效率及换热器效率对循环特性有显著影响,实际循环中存在一最优膨胀比,其位置受转动部件等熵效率及换热器效率影响,附加回热器可以提高循环的性能,同时降低了最优压比。  相似文献   

4.
提出一种新型跨临界二氧化碳(trans-critical carbon dioxide,TCO2)再压缩循环和喷射器制冷循环耦合的冷电联供系统。该系统在输出电能的同时,利用低品位热能驱动喷射器工作输出冷量。以输出电量1 MW为设计目标,对比冷电联供系统和再压缩发电系统的性能,研究联供系统各部件(火用)损和主要热力参数对其性能的影响。结果表明:联供系统利用CO2余热驱动喷射器输出冷量,循环热效率高于单一再压缩系统;加热器(火用)损所占比例最大,回热器次之;透平进口温度、压力和背压对联供系统工质流量、循环效率、输出功率、加热器功率、压缩机耗功及喷射器制冷量等参数影响较大;而冷凝温度和蒸发温度仅对制冷循环制冷量影响较大。在设定条件下,联供系统的循环热效率和(火用)效率可分别达到46.99%和47.21%。  相似文献   

5.
Most heat exchangers are designed in pursuit of minimum pressure loss and maximum heat transfer conductance, and the pressure drop of heat exchanger is sometimes neglected intentionally or unintentionally in the designing stage. However, the actual pressure drop should be considered when the requirement of heat exchanger is very strict. Different from the most previous researches that examine the hydraulic aspect, this paper describes the thermal aspect of the pressure loss and its relevance to the basic model of heat exchanger. The analytical result reveals the indirect effect of pressure loss on the thermal performance of heat exchanger. The whole impact on the effectiveness of counter-flow heat exchanger is discussed in terms of newly defined relevant dimensionless parameters.  相似文献   

6.
介绍了丝网的种类,考虑丝网质量对回热器性能的影响,给出了优质丝网的判据.详细分析了丝网目数对空隙率、比传热面积和当量直径的影响,以回热器回热损失与压降损失之和最小,尽可能减小回热器空容积为原则进行计算分析,得出2 W@80 K制冷机回热器的最佳填料为丝径0.036 mm、276目×276目的平纹方孔网.试验结果表明选用该规格丝网的制冷机在制冷温度80 K、压缩机输入功率46.2 W时,获得的制冷量为2 W.  相似文献   

7.
冷端孔径对涡流管性能影响的实验研究   总被引:1,自引:0,他引:1       下载免费PDF全文
本文搭建了涡流管性能实验台,研究了不同冷端孔口直径的涡流管实验样机的性能。当进口压力为0.3~0.5 MPa时,分析了冷端孔径对冷端温降特性、制冷量特性、等熵温度效率特性及COP特性的影响。结果表明:冷端孔口直径对涡流管性能有很大影响,存在一个使涡流管冷端温降及制冷量均达到最大值的最佳冷端孔口直径,在本文设计的涡流管几何尺寸条件下,最佳冷端孔口直径为5 mm,最佳冷端孔口直径与热端直径比为0.5。  相似文献   

8.
机械过冷CO_2跨临界制冷循环性能理论分析   总被引:2,自引:0,他引:2       下载免费PDF全文
采用蒸气压缩制冷循环(辅助循环)对CO_2跨临界制冷循环气体冷却器出口的CO_2流体进行冷却,可减小节流不可逆损失,提高循环性能。本文对机械过冷CO_2跨临界制冷循环进行热力学循环分析,结果表明:当在最优排气压力和最优过冷度两个参数条件下,循环存在最大COP。环境温度越高、蒸发温度越低,采用机械过冷方法使循环性能提升越显著,相对传统CO_2制冷循环,通过辅助循环可显著提高循环COP,降低CO_2排气压力和温度。相对CO_2压缩机,辅助循环压缩机的功耗较少。分析了辅助循环中采用11种不同制冷剂的性能,可得除R41外,其它10种工质对循环整体COP的提升程度差异不明显。综上所述,机械过冷CO_2跨临界制冷循环更适用于环境温度较高、蒸发温度较低的场合。  相似文献   

9.
This paper aims at evaluating three selected low-cost porous materials from the point of view of their suitability as regenerator materials in the design of thermoacoustic travelling-wave engines. The materials tested include: a cellular ceramic substrate with regular square channels; steel “scourers”; and stainless steel “wool”. Comparisons are made against a widely used regenerator material: stainless steel woven wire mesh screen. For meaningful comparisons, the materials are selected to have similar hydraulic radii. One set of regenerators was designed around the hydraulic radius of 200 μm. This included the ceramic substrate, steel “scourers”, stainless steel “wool” and stacked wire screens (as a reference). This set was complemented by steel “scourers” and stacked wire screens (as a reference) with hydraulic radii of 120 μm. Therefore six regenerators were produced to carry out the testing. Initial tests were made in a steady air flow to estimate their relative pressure drop due to viscous dissipation. Subsequently, they were installed in a looped-tube travelling-wave thermoacoustic engine to test their relative performance. Testing included the onset temperature difference, the maximum pressure amplitude generated and the acoustic power output as a function of mean pressure between 0 and 10 bar above atmospheric. It appears that the performance of regenerators made out of “scourers” and steel “wool” is much worse than their mesh-screen counterparts of the same hydraulic radius. However cellular ceramics may offer an alternative to traditional regenerator materials to reduce the overall system costs. Detailed discussions are provided.  相似文献   

10.
A room-temperature magnetic refrigerator, consisting of permanent magnet, active magnetic refrigeration (AMR) cycle bed, pumps, hydraulic circuit, active magnetic double regenerator cycle (AM2RC) and control subsystems, has been designed. The magnetic field is supplied by NdFeB permanent magnets. The AMR bed made by stainless steel 304 encloses gadolinium particles as the magnetic working substance. Each part of the refrigerator is controlled by the programmable controller. The different standard heat exchangers are employed to expel heat. The cycle performance of this self-designed facility is analyzed using Langevin theory. The results provide useful data for future design and development of room-temperature magnetic refrigeration.  相似文献   

11.
In this paper, an isothermal model is used for modeling the Stirling cryocooler. Various losses including regenerator imperfection thermal loss, piston finite speed loss, gas spring hysteresis loss, displacer shuttle heat loss, clearance heat pump loss, heat conduction loss, and flow viscosity loss are taken into consideration at the same time step, as they could interact with each other. Energy and exergy balance analysis of the cryocooler shows that the mechanical friction loss is the biggest mechanical loss; conduction loss is the biggest heat loss. Effects of parameters consisting of cold end temperature, hot end temperature, average pressure, rotation speed, displacer clearance size, phase shift between piston and displacer, and ratio between diameter and stroke of piston on the cryocooler's performance are investigated. It shows that, there is optimum displacer clearance size, optimum phase shift between piston and displacer, and optimum ratio between diameter and stroke of piston for the studied cryocooler. The isothermal model was verified by the PPC-102 Stirling cryocooler.  相似文献   

12.
R290/CO2复叠式制冷系统的性能实验   总被引:3,自引:0,他引:3  
通过对R290/C02复叠式制冷系统的性能实验,对低温循环用CO2作为制冷工质,高温循环分别用R22和R290为制冷工质的性能进行比较,结果表明,随着蒸发温度的升高,冷凝温度的降低,R290/CO2复叠式制冷系统的最佳质量流量比增大,COP增加。随着高温循环压缩机入口温度的升高,R290压缩机的功耗略高于R22压缩机的功耗,R290循环的COPh要高于R22循环的COPh。结果表明自然工质R290/CO2复叠式制冷系统具有很好的发展前景。  相似文献   

13.
从基本方程人手分析交变流动蓄冷器,得到了不同于稳态流动的交变流动阻力系数定义,并在动态实验台的基础上,研究高频交变流动蓄冷器的阻力特性.实验中发现交变流动与稳态流动阻力系数的关系不能用简单的倍数关系表示,finst/fst比例因子随着瞬态雷诺数而变化;交变流动阻力系数随瞬时Re变化存在非对称性.所得实验结果对于高频脉冲管制冷机的整机数值模拟有重要的参考价值.  相似文献   

14.
设计并搭建了一台小型室温磁制冷系统,进行了初步性能实验研究。系统采用双层同轴Halbach永磁组,磁体旋转后可在中心处获得最大1.3 T磁场;在主动磁回热器两端设计了双通道流路,可有效避免系统流体死体积;驱动控制系统利用多轴伺服驱动器对磁体和水力活塞运动进行控制。样机采用了直径0.55—0.80 mm钆球作为制冷工质、p H值为11的氢氧化钠溶液为换热流体,进行了初步实验研究,考察了利用系数对制冷温跨的影响等。在高低温端绝热与运行频率0.60 Hz的情况下,实验获得13.3 K的最大无负荷制冷温跨;在运行频率为0.4 Hz时最佳利用系数为0.35,此时无负荷制冷温跨为12.1 K。  相似文献   

15.
二氧化碳跨临界循环的比较分析   总被引:1,自引:0,他引:1  
傅烈虎  李青冬  徐荣吉 《制冷》2007,26(3):65-68
介绍了二氧化碳的热物理特性,理论分析了二氧化碳跨临界循环。在讨论基本理论循环的基础上,研究了带回热器的循环、带膨胀机的循环、既带回热器又带膨胀机的循环。同时,比较了各种循环的性能系数,发现在各种循环中都存在一个最佳的排气压力使得系统的性能系数达到最大值,并且带膨胀机的循环是性能系数最优的循环。  相似文献   

16.
A conceptual trigeneration system is proposed based on the conventional gas turbine cycle for the high temperature heat addition while adopting the heat recovery steam generator for process heat and vapor absorption refrigeration for the cold production. Combined first and second law approach is applied and computational analysis is performed to investigate the effects of overall pressure ratio, turbine inlet temperature, pressure drop in combustor and heat recovery steam generator, and evaporator temperature on the exergy destruction in each component, first law efficiency, electrical to thermal energy ratio, and second law efficiency of the system. Thermodynamic analysis indicates that exergy destruction in combustion chamber and HRSG is significantly affected by the pressure ratio and turbine inlet temperature, and not at all affected by pressure drop and evaporator temperature. The process heat pressure and evaporator temperature causes significant exergy destruction in various components of vapor absorption refrigeration cycle and HRSG. It also indicates that maximum exergy is destroyed during the combustion and steam generation process; which represents over 80% of the total exergy destruction in the overall system. The first law efficiency, electrical to thermal energy ratio and second law efficiency of the trigeneration, cogeneration, and gas turbine cycle significantly varies with the change in overall pressure ratio and turbine inlet temperature, but the change in pressure drop, process heat pressure, and evaporator temperature shows small variations in these parameters. Decision makers should find the methodology contained in this paper useful in the comparison and selection of advanced heat recovery systems.  相似文献   

17.
本文针对中低温余热特性搭建了2kW目标发电量的小型有机朗肯循环发电系统。实验研究了全封闭式涡旋膨胀机在有机朗肯循环系统中的参数特性。通过改变膨胀机进出口的状态,研究了运行压比和转速对于膨胀机单体及系统性能的影响。性能参数主要包括等熵效率、容积系数、循环热效率及循环净功。结果表明:膨胀机运行压比是影响系统性能的重要参数,循环净功随压比的增大而增加,循环热效率及膨胀机的等熵效率随压比变化均存在最优值;考虑内泄漏及摩擦损失等影响,最优运行压比一般应略大于膨胀机设计比;提高膨胀机转速能有效减少内泄漏损失。  相似文献   

18.
The influence of the time variation of the magnetic field, termed the magnetic field profile, on the performance of a magnetocaloric refrigeration device using the active magnetic regeneration (AMR) cycle is studied for a number of process parameters for both a parallel plate and packed bed regenerator using a numerical model. The cooling curve of the AMR is shown to be almost linear far from the Curie temperature of the magnetocaloric material. It is shown that a magnetic field profile that is 10% of the cycle time out of sync with the flow profile leads to a drop in both the maximum temperature span and the maximum cooling capacity of 20-40% for both parallel plate and packed bed regenerators. The maximum cooling capacity is shown to depend very weakly on the ramp rate of the magnetic field. Reducing the temporal width of the high field portion of the magnetic field profile by 10% leads to a drop in maximum temperature span and maximum cooling capacity of 5-20%. An increase of the magnetic field from 1 T to 1.5 T increases the maximum cooling capacity by 30-50% but the maximum temperature span by only 20-30%. Finally, it was seen that the influence of changing the magnetic field was more or less the same for the different regenerator geometries and operating parameters studied here. This means that the design of the magnet can be done independently of the regenerator geometry.  相似文献   

19.
P.C.T. de Boer 《低温学》2003,43(7):379-391
The performance of the double inlet pulse tube (DIPT) is analyzed using a linearized model that takes account of the void volume of the regenerator. The maximum rate of refrigeration obtainable with the regenerator is determined as a function of frequency and void volume. This rate can be achieved by a DIPT with infinitely large reservoir volume. Corrections resulting from a finite reservoir volume are important only at low frequency. The coefficient of performance of a DIPT with optimized rate of refrigeration is less than half of the thermodynamic maximum. The results obtained for the DIPT are compared with corresponding results for the optimized orifice pulse tube refrigerator (OPTR). The large improvements in performance obtained with the DIPT over the OPTR are due primarily to an increase in the pulse tube pressure. The maximum rate of refrigeration decreases as the temperature at the cold side decreases. This is caused primarily from the resulting decrease in cold side flow rate. At given temperature ratio, addition of the second inlet reduces the flow rate through the regenerator over a range of intermediate frequencies.  相似文献   

20.
提出R404A直接接触凝结换热的制冷循环,分析R404A直接接触凝结制冷循环的热力性能,并与常规双级压缩制冷循环的性能进行对比。得出结论:在一定的冷凝温度、蒸发温度和过冷液体的过冷度下,直接接触凝结制冷循环存在最佳的饱和液体温度,并在此最佳的饱和液体温度下,获得最优的性能和最小的冷凝热负荷,随着过冷液体的过冷度增大和蒸发温度升高,直接接触凝结制冷循环的性能系数增加、冷凝热负荷减少,获得最优性能的最佳饱和液体温度值提高。过冷液体的过冷度为25℃时,直接接触凝结制冷循环的最佳性能系数较双级压缩制冷循环的最佳性能系数提高6.2%。直接接触凝结制冷循环的最小冷凝热负荷较双级压缩制冷循环的最小冷凝热负荷减小1.8%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号