首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
J. Sim  H.R. Kim  B.W. Lee  I.S. Oh 《低温学》2007,47(3):183-188
We present the fabrication and short circuit test results of a 14 kV single-phase resistive superconducting fault current limiter (SFCL) based on YBa2Cu3O7 (YBCO) films. Individual components were processed using the 4″ YBCO films and have the rated voltage and current of 600 V and 35 A at 77 K, respectively. Twenty four components, eight components in series and three lines in parallel, make a module having the rated voltage and current of 4.8 kV and 105 A, respectively. Three modules were assembled in series to produce the SFCL working at 77 K, a 14 kV single-phase machine for the 22.9 kV Y-Y grid. short circuit tests were successfully conducted in an accredited test facility with the maximum fault currents up to 14.1 kAP. All components quenched together upon faults and shared the rated voltage evenly without any supplementary device between the modules. This proves that the SFCL based on YBCO films may not only work reliably at 22.9 kV, but also provide technical feasibility for higher voltage application including the transmission grids.  相似文献   

2.
A general optimization method for vapor-cooled current leads is presented with taking into account the effect of convection heat transfer and extended surfaces. This analytical work is considered as a unified design method, since one formulation calculates the minimum heat load and the corresponding optimal design condition for arbitrary heat transfer condition, spanning two limiting cases—the zero convection (or conduction-cooled leads) and the perfect heat transfer. It is clearly shown that the augmentation of the convective cooling can reduce the heat load to a certain extent, but the optimum lead parameter required to minimize the heat load for the finite heat transfer may not exist between the two limiting values. A new dimensionless parameter called the Ch number is introduced to conveniently incorporate the convection effect into the optimization. The present method is demonstrated for two specific lead designs that have been recently developed for 10 kA level of applications.  相似文献   

3.
A detachable thermosiphon, as a transient thermal switch for conduction-cooled superconducting magnet, is designed, fabricated and tested. A thermosiphon between the first and second stages of a cryocooler can reduce the cool-down time of a conduction-cooled superconducting magnet by using the large cooling capacity of the first stage. The thermosiphon is a very efficient heat transfer device until all the working fluid in it freezes (off-state). After the working fluid freezes and the second stage temperature becomes lower than that of the first stage, however, the thermosiphon then becomes a conduction heat leak path between two stages of the cryocooler. Considering a very small cooling capacity of the second stage of the cryocooler around 4.2 K, the conduction heat loss is not negligible. Therefore, a detachable thermosiphon, made of a metal bellows, is considered to be able to eliminate such a conduction heat leak. The mock-up magnet is cooled down with the thermosiphon and the thermodynamic states of the thermosiphon and the mock-up magnet are precisely examined during the whole cool-down process. At off-state, the thermosiphon is detached mechanically from the magnet. In this way, the conduction heat leak path through the thermosiphon wall is completely eliminated. This paper describes the detailed transient operation of the detachable thermosiphon using nitrogen as the working fluid.  相似文献   

4.
In the present work, a cryogenic mechanical property testing system conduction-cooled by two G-M cryocoolers was developed. The testing sample can be cooled from room temperature to 2.7 K within 7.5 h. The sample was first cooled down to 11.1 K directly by the two G-M cryocoolers and then cooled down to 2.7 K by decompressing the chamber. Instead of liquid helium, the cooling process is characterized by cooling with recycled helium gas as heat transfer medium. The heat load of the system was analyzed and optimizations were adopted in terms of material selections and design. The static load capacity of the system reaches 200 kN and the fatigue load capacity can reach 50 kN. This system can be installed onto an electronic universal testing machine or a fatigue testing machine to characterize static tension, fracture mechanics or fatigue properties at tunable low temperatures. Tensile properties of 316L austenitic stainless steels at 4.2 K were tested with the system and the results were compared with those obtained by cooled using liquid helium, which demonstrates high reliability.  相似文献   

5.
Development of mechanical cryocoolers for Astro-H/SXS   总被引:1,自引:0,他引:1  
The Soft X-ray Spectrometer (SXS) is a high-resolution spectrometer with an X-ray micro-calorimeter array onboard the Japanese X-ray astronomy satellite Astro-H, planned for launch in 2013. The micro-calorimeter is operated at cryogenic temperature of 50 mK provided by the Adiabatic Demagnetization Refrigerator (ADR) with a heat sink of 1.3 K liquid helium stored in the SXS Dewar. To extend the liquid helium lifetime to over 3 years in orbit, two types of mechanical cryocoolers are installed: 20 K-class double-staged Stirling (2ST) coolers and a 1 K-class Joule-Thomson (JT) cooler. Improvement of mechanical cryocoolers has been investigated and verified for higher reliability and cooling performance. The engineering model (EM) of upgraded mechanical cryocoolers was fabricated for a long lifetime test. The required cooling power of 200 mW at 20 K for the 2ST cooler and 10 mW at 1.7 K for the JT cooler are achieved by EM test.  相似文献   

6.
A resorption system with simultaneous cold and heat production was studied. The heat produced could be used for sanitary or process purposes, or to drive another heat-powered machine. The resorption reactors had MnCl2 and NH4Cl as reactant (which are impregnated in expanded graphite) and NH3 as refrigerant. The combined coefficient of performance and amplification (COPA) of this system reached 1.3 when the cooling effect was produced at 0 °C and heating effect at 75 °C with the regeneration temperature of 140 °C. Its COP was 0.35 with a specific cooling power (SCP) of 1.12 MJ kg−1 day−1, and the heat sink in this case remained below the cooling temperature for more than 5 h. Because of the heat production at certain temperature level (from 70 °C to 80 °C) in this study, the released heat could be used to power a silica gel-water adsorption chiller and the overall COP of the combined system would increase dramatically.  相似文献   

7.
The hybrid superconducting fault current limiter (SFCL) is now at the stage of practical use in a power grid in Korea. A cryogenic cooling system was designed, fabricated, and successfully tested for a prototype of 22.9 kV/630 A SFCL. The operation scheme of cryogenic system has been investigated in preparation for temporary loss of cryocooler power in hybrid SFCL (in Kim et al., IEEE Trans. Appl. Supercond. 21(3):1284–1287, 2011). In this paper, we investigated the empirical modeling of cryogenic cooling system for SFCL using principal components and auto-associative support vector regression (PCSVR) for the prediction and fault detection of the cryogenic cooling system. For empirical model, data were acquired during a blackout test of cryogenic cooling system. Blackout times of the test were 1 hour and 4 hours at two operation current levels. Three set of data were used for training and optimization of the model and the rest set of data was used for verification. Signals for the model are temperatures measured at copper band and cold head of cryocooler, system pressure and liquid temperatures measured at two locations in liquid-nitrogen pool. For optimization of the SVR parameters, the response surface method (RSM) and particle swarm optimization (PSO) were adopted in this paper. After developing the empirical model we analyzed the accuracy of the model. Also, these results were compared with that of auto-associative neural networks (AANN). RSM and PSO gave almost the same optimum point. PCSVR showed much better performance than AANN in accuracy aspects. Moreover, this model can be used for the prognosis of cryogenic cooling system for SFCL.  相似文献   

8.
A cool-down time is one of the major factors in many cryocooler applications, especially for the design of conduction-cooled superconducting devices. Cool-down time means a time cooling a thermal mass from a room-temperature to cryogenic-temperature within a stipulated amount of time. The estimation of cool-down time seeks the elapsed time to cool the thermal object by a cryocooler during initial cool-down process. This procedure includes the dimension and properties of thermal object, heat transfer analysis for cryogenic load, thermal interface between cold mass and cryocooler, and available refrigeration capacity of cryocooler. The proposed method is applied to the specific cooling system for 3 T superconducting magnet cooled by a two-stage GM cryocooler. The result is compared with that of experiment, showing that proposed method has a good agreement with experiment. In addition, the initial cool-down time can be shortened by employing thermal link between the cold mass and first-stage of cryocooler. Through a rigorous modeling and analysis taking into account the effect of thermal link size, it is concluded that there exists an optimal cool-down time during initial cooling in conduction-cooled superconducting magnet system.  相似文献   

9.
This paper presents a comparative study of resistive and inductive superconducting fault current limiter (SFCL) for power systems transient stability improvement. Two applications of transient stability assessment are presented in this paper: The first shows the efficiency of the resistive and inductive SFCL in series with a generator, the second uses SFCL installed in series with a transmission line. SFCL can just be operated during the period from the fault occurrence to the fault clearing; the modeling and the effect of SFCL has been investigated to have higher benefits for the power system. In the present work, modification of the admittance matrix method is used for modeling of SFCL; Critical Clearing Time (CCT) has been used as an index for evaluated transient stability. The transient stability is assessed by the criterion of relative rotor angles, using the Runge–Kutta method. The effectiveness of the proposed method is tested on the WSCC3 nine-bus system applied to the case of three-phase short circuit fault in one transmission line. A simulation and comparison are presented in this document.  相似文献   

10.
Many areas of research have benefited from the application of conduction-cooled superconducting magnet technology. The middle and small-scale magnets immersed in the liquid helium will be replaced by the easy-operating conduction-cooled superconducting magnet due to convenient operation, lower operating cost and easy for user. For the goal of superconducting magnet applications in the advanced testing for high temperature superconducting (HTS) wire and sample coils, a wide bore conduction-cooled superconducting magnet with available warm bore of ?186 mm and center field of 5-6 T for background magnetic field applications was designed, fabricated and tested. The system allows measurements to be performed in a repeatable and reliable fashion. In order to support the high stress in magnet, the detailed finite element (FE) analysis with electro-plastic model is proposed. The sample cryostat is designed with cryofree. It includes two GM cryocoolers. The detailed design, fabrication and thermal analysis are presented in the paper.  相似文献   

11.
High-power Stirling-type pulse tube coolers (PTCs) are promising candidates for cooling HTS devices and gas liquefaction or separation applications. Nevertheless, till now most high-power Stirling-type PTCs are not able to reach a refrigeration temperature below 35 K. Here, a high-power two-stage Stirling-type PTC was designed, manufactured and experimentally investigated. In order to realize a convenient coupling with a thermal load, U-shape configuration is adopted in both stages, which makes it more challenging to distribute the gas flow and reduce dead volume in the cold end heat exchanger. By optimizing operating conditions, flow straightener, and double-inlet opening, the cooler has reached no-load refrigeration temperatures of 29.6 K and 27.1 K at 55 Hz and 40 Hz, respectively. Furthermore, the cooler is able to provide cooling powers of 50 W at 45.6 K and 100 W at 59.3 K when input pV powers are 4.77 kW and 4.59 kW, respectively.  相似文献   

12.
Both satellite Planck and Herschel are cryogenic ones [1] and [2], the first one having a cold point around 0.1 K, the second one around 0.3 K. Not only are the detectors cooled, but also major subsystems and systems of the spacecrafts.The Centre Spatial de Liège (CSL) is involved in testing several parts of these spacecrafts [3], starting form optical tests on the mirrors or on the telescope, via cryogenic vibration testing of scientific focal plane instruments, ending with the full Planck spacecraft testing. Each test requires temperature lower than 20 K, in volumes ranging from 1 m3 to 60 m3, cooling several kilograms to more than one ton, and withstanding heat load up to 150 W in stabilisation.The overall Planck spacecraft test challenge is very high, as it is the only way to measure the end-to-end cooling chain of the spacecraft. The space conditions reproduction must be as perfect as possible to avoid the test set-up influence on the spacecraft performances, especially linked to radiative cooling, mechanical perturbations and Helium residual pressure.Different challenges are presented, and the related CSL solutions are described, highlighting the Helium partial pressure problem, the related computations and trapping system by large sorption panel.  相似文献   

13.
The Japanese infrared space telescope SPICA mission, following the successful Akari mission, has been studied at the concept design phase in international collaboration with ESA under the framework of the ESA Cosmic Vision 2015-2025. The SPICA spacecraft is to be launched in 2018 and transferred into a halo orbit around the Sun-Earth L2 to obtain a stable thermal environment where the IR space telescope’s large mirror of 3 m-class in diameter can be cooled to <5.5 K with mechanical coolers and effective radiative cooling with no use of stored cryogen. The SPICA’s large and cold telescope is expected to provide unprecedented scientific observation optimized for mid-IR and far-IR astronomy with ultra-high sensitivity and excellent spatial resolution during a nominal mission life of 3 years (goal 5 years). Thermal and structural analyses show that the obtained design of the SPICA cryogenic system satisfies the mission requirement. Mechanical coolers for the 4.5 K stage and the 1.7 K stage, which have been continuously developed, have a sufficient cooling capacity with low power consumption to lift the heat loads from instruments and parasitic heat loads. As a result, it is concluded that the concept design of the SPICA cryogenic system is confirmed for the initial cooling mode after launch and the nominal operation mode.  相似文献   

14.
We report a development of a portable dewar with a double-stage ADR in it, and its cooling test results. The purpose of this system is to establish a cooling cycle of double-stage adiabatic demagnetization from 4.2 K to 50 mK, which is strongly desired for future space science missions. In our test dewar, two units of ADR are installed in parallel at the bottom of a liquid He tank. We used 600 g of GGG (Gadolinium Gallium Garnet) for the higher temperature stage (4 Tesla) and ∼90 g of CPA (Chromic Potassium Alum) for the lower temperature stage (3 Tesla). A passive gas-gap heat switch (PGGHS) is used between these two stages, while a mechanical heat switch between the He tank and the GGG stage. Using this system, 50 mK was achieved, and various kinds of cooling cycles with different operating temperatures and different sequences of magnetization were tested. We also evaluated the performance of the PGGHS, and interference of the magnetic field with each other during a stable temperature control.  相似文献   

15.
There are many irreplaceable advantages of high temperature superconducting (HTS) fault current limiter, applying in electric utilities. It is expected to be able to solve excessive fault current problems and to enhance safety and stability of power systems. In this paper, the R and D of an improved bridge-type 10.5 kV three-phase superconducting fault current limiter (SFCL) was present. Each phase adopted a HTS coil with inductance of 6.2 mH. The three coils wound with 8,571 m Bi2223/Ag tapes totally. After installation at a 110 kV/10.5 kV substation in Hunan Province of China, the performances of the whole SFCL were tested, including a three-phase-to-ground short circuit experiment at the pre-setup short circuit point. And then, the SFCL was put into operations in the 10.5 kV power grids for more than 11000 h. About 3 years later, the SFCL was moved, reinstalled, and put into operation again since February 16 of 2011 at a 10.5-kV superconducting power substation located in Baiyin, Gansu Province of China. In this paper, the redesigned and manufactured cryostats with nonmagnetic stainless steel, tests, and long-term operations of the SFCL in 10.5 kV power grids were also described in detail.  相似文献   

16.
G.A. El-Awadi  S. Abdel-Samad  J. Ritman 《Vacuum》2009,83(11):1321-1325
Very lightweight, thin liquid hydrogen/deuterium heat pipe-target systems are used in the Time Of Flight (TOF) spectrometer at the COSY accelerator facility. The proton beam impinges upon LH2/LD2 targets thereby heating the target. The stability of the liquid targets depends on the thermal capacity of the whole system, the energy losses from the proton beam and heat losses from the surrounding of the heat pipe-target system. The radiation heat load has been reduced by a factor of 4.5 by reducing the length of the gas tube from 180 cm (long tube) to 40 cm (short tube). Furthermore, the 40 cm long gas tube was coated with a thin polished gold layer, thereby reducing the heat load by an additional factor 22. The thermal capacity is improved by reducing the mass of the gas tube from 23 g to 5 g. The cool down time of the 7 mm diameter gold coated heat pipe with the gold coated 40 cm gas tube is reduced by 12 min.  相似文献   

17.
We present test results of the first adiabatic demagnetization refrigerator (ADR) that produce true continuous cooling at sub-kelvin temperatures. This system uses multiple stages that operate in sequence to cascade heat from a “continuous” stage up to a heat sink. Continuous operation avoids the usual constraints of long hold times and short recycle times that lead to the generally large mass of single-shot ADRs, and allows us to achieve much higher cooling power per unit mass. Our design goal is 10 μW of cooling at 50 mK while rejecting heat to a 6–10 K heat sink. The total cold mass is estimated to be less than 10 kg, including magnetic shielding of each stage. These parameters envelop the requirements for currently planned astronomy missions. The relatively high temperature heat rejection capability allows it to operate with a mechanical cryocooler as part of a cryogen-free, low temperature cooling system. This has the advantages of long mission life and reduced complexity and cost. At present, we have assembled a three-stage ADR that operates with a superfluid helium bath. Additional work is underway to develop magnetocaloric materials that can extend its heat rejection capability up to 10 K. Design, operation and performance of the ADR are discussed.  相似文献   

18.
A cryogenic thermosiphons is an efficient heat transfer device between a cryocooler and a thermal load that is to be cooled. This paper presents an idea of thermosiphon which contains two vertically-separated evaporators. This unique configuration of the thermosiphon is suitable for the purpose of cooling simultaneously two superconducting bearings of the HTS (high temperature superconducting) flywheel system at the same temperature. A so-called double-evaporator thermosiphon was designed, fabricated and tested using nitrogen as the working fluid under sub-atmospheric pressure condition. The interior thermal condition of the double-evaporator thermosiphon was examined in detail during its cool-down process according to the internal thermal states. The double-evaporator thermosiphon has operated successfully at steady-state operation under sub-atmospheric pressure. At the heat flow of 10.6 W, the total temperature difference of the thermosiphon was only 1.59 K and the temperature difference between the evaporators was 0.64 K. The temperature difference of two evaporators is attributed to the conductive thermal resistance of the adiabatic section between the evaporators. The method to reduce this temperature difference has been investigated and presented in this paper. The proper area selection of condenser, evaporator 1, and evaporator 2 was studied by using thermal resistance model to optimize the performance of a thermosiphon. The superior heat transfer characteristic of the double-evaporator thermosiphon without involving any cryogenic pump can be a great potential advantage for cooling HTS bulk modules that are separated vertically.  相似文献   

19.
A single-stage inline pulse tube refrigerator (PTR) with tapered slit-type heat exchangers utilized as the aftercooler and the cold end heat exchanger has been designed, fabricated and investigated. Simple energy conservation equation is applied for the design of the tapered slit-type heat exchangers with which the PTR is optimized. The air-cooled aftercoolers with different slit configurations have been compared in this paper with regard to its cooling capacity. The optimized PTRs driven by a single-piston linear compressor achieve the lowest temperature of 53.1 K and 53.5 K, and the cooling capacity of 3.0 W at 60 K and 3.5 W at 60 K, respectively. The result shows that the tapered slit-type heat exchangers can replace the mesh-type heat exchanger, but the geometric configuration of slits and the compressible volume should be carefully considered for optimum performance of the cooler.  相似文献   

20.
J.Y. Hu  W. Dai  X.T. Wang  Y. Huang 《低温学》2010,50(9):603-607
Thermoacoustic theory is a powerful tool to understand the working mechanism of regenerative thermodynamic systems. In this paper, a modified thermoacoustic model is employed to design three single-stage Stirling-type pulse tube cryocoolers. The first one (PTC-10) is designed with in-line configuration and the second one (CPTC-10) is designed with co-axial configuration. Both of them are able to provide about 10 W cooling power at 77 K with a relative Carnot efficiency of about 18.6%. The third one (PTC-20), designed with in-line configuration, has a twice cross section area of the PTC-10. It can provide more than 20 W cooling power at 77 K with a relative Carnot efficiency of 22%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号