首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Behavioral and biochemical responses to D1 and D2 dopamine (DA) agonists were used to evaluate the participation of striatal peptidergic mechanisms in the motor function alterations that attend chronic neuroleptic treatment. Rats, given haloperidol (1 mg/kg, i.c.) for 21 consecutive days, were randomly allocated to one of the following treatments: the D1 agonist SKF 38393, the D2 agonist quinpirole, their combination or saline. Stereotyped behavior and neuropeptide levels were evaluated after 5 days treatment and 4 days washout. Haloperidol increased most oral behaviors including licking, chewing and biting as well as striatal enkephalin and somatostatin levels. Subsequent treatment with SKF 38393 diminished the haloperidol-induced increase in licking and chewing; quinpirole reduced chewing behavior. The administration of both agonists together decreased chewing and biting. Neither DA agonist alone, nor their combination, reduced the haloperidol-induced increase in enkephalin levels. Both SKF 38393 and quinpirole, when given alone, tended to decrease the haloperidol-induced increase in somatostatin levels; when both D1 and D2 agonists were administered together, somatostatin levels declined significantly. These results suggest that somatostatin- but not enkephalin-containing striatal neurons contribute to the expression of haloperidol-induced stereotypies.  相似文献   

2.
The contributions of striatal D1 receptors to the expression of sensorimotor behavior are qualitatively different in rats depleted of dopamine (DA) as neonates vs. as adults. In an effort to reveal neuronal mechanisms underlying these behavioral difference we determined the effects of the partial D1 agonist SKF 38393, the muscarinic antagonist scopolamine, and the combination of the two drugs on the induction of c-fos in the striatum and its projection sites, the globus pallidus and substantia nigra. Adult rats, given intracerebroventricular injections of 6-hydroxydopamine (6-OHDA, 50 micrograms/5 microliters/hemisphere) or its vehicle on postnatal day 3, were treated with SKF 38393 (1.5 mg/kg, i.p.), scopolamine (5.0 mg/kg, i.p.) or the combination of the two drugs. There was no significant induction of c-fos in vehicle-treated controls, regardless of drug administration. In DA-depleted rats, scopolamine also did not induce c-fos whereas SKF 38393 produced a significant increases in the number of FOS-positive cells in the dorsal, but not ventral, striatum. The combined administration of scopolamine and SKF 38393 resulted in a potent synergism in the number of FOS-positive cells in DA-depleted rats. These interactions between lesion condition and drugs on c-fos induction were not secondary to differences in drug-induced behavioral activity. Activity levels were no different in vehicle vs. DA-depleted rats following the combined administration of scopolamine + SKF 38393, yet the two groups of rats exhibited marked differences in the density of FOS-positive striatal neurons. The effects of scopolamine and SKF 38393 on c-fos induction in striatum are qualitatively similar to those reported in rats DA-depleted as adults and suggest that, at this single-label level of analysis, the ability of D1 and muscarinic receptors to influence striatal activity does not contribute to the marked age-related differences in the behavioral effects of DA depletions.  相似文献   

3.
Systemic administration of the partial DA D1 agonist SKF38393 often increases the firing rate of neurons in the VP of rats. This study extended this finding by comparing responses to (+/-)SKF38393 with those produced by two D1 agonists that have greater intrinsic efficacy, (+/-)SKF82958 and (+/-)DHX. The role of endogenous DA in D1 agonist-induced effects also was examined. Extracellular recordings of single VP neurons were obtained in chloral hydrate-anesthetized male rats, to which equimolar doses of SKF38393, SKF82958 or DHX were administered i.v. Each of the agonists increased firing rate in about 45% of the neurons tested. Moreover, each agonist produced the same maximal increase in activity (161% to 178% of spontaneous rate). Acute decreases in synaptic DA, produced by either GBL or combined treatment with reserpine and AMPT, potentiated the maximal increase in activity evoked by SKF38393 or SKF82958. These DA-depleting treatments did not alter the percentage of neurons that displayed this response to D1 agonist challenge. Low doses of the selective D1 antagonists SCH23390 or SCH39166 generally attenuated the agonist-induced changes in firing rate, supporting the conclusion that D1 receptors were activated by SKF38393, SKF82958 and DHX. Thus, these three D1 agonists, which produce different maximal increases in striatal adenylyl cyclase activity, had comparable efficacy to increase VP neuronal activity. A reduction in endogenous DA enhanced the D1 agonist-induced effects, possibly through a reduction in inhibitory influences on VP neurons that are mediated by other DA receptor subtypes.  相似文献   

4.
Nitric oxide (NO) in brain has been implicated in neuronal regulatory processes and in neuropathologies. Previously we showed that NO modified quinpirole-induced yawning, a behavioral measure of dopamine (DA) D3 receptor activation in rats. The aim of this study was to characterize the effect of nitro-L-arginine methyl ester HCl (NAME) and L-arginine HCl on reactivity of rats to the DA D1 receptor agonist SKF 38393 and DA D1 antagonist SCH 23390 in intact and neonatal 6-hydroxydopamine (6-OHDA)-lesioned rats (134 micrograms of base ICV at 3rd day after birth). L-arginine HCl (300 mg/kg i.p.) increased the oral activity response in 6-OHDA-lesioned rats, like SKF 38393, and induced catalepsy in intact control rats, like SCH 23390. In contrast, NAME had no effect on oral activity or catalepsy, but fully attenuated SKF 38393-induced oral activity. These findings indicate that L-arginine HCl has no apparent effect at the DA D1 receptor, but that NAME is effective in attenuating a DA D1 agonist-induced effect. Consequently NO may be an intracellular second messenger for supersensitized receptors associated with DA D1 agonist-induced oral activity.  相似文献   

5.
The present study examined whether exposure to 5 days of continuous cocaine in rats would produce any persisting alterations of the decrease in striatal dopamine (DA) overflow produced by local infusion of a D1 receptor agonist. Using a microdialysis probe in striatum, changes in DA, DA metabolites, and GABA were assessed 14 to 21 days following a 5-day continuous cocaine treatment. There were no differences in baseline levels of DA and it's metabolites. SKF 38393 (10(-6) infusion into the striatum decreased striatal DA levels in the controls and this effect was attenuated in cocaine-pretreated rats. This result, together with other observations, supports the hypothesis of a persistently altered D1-mediated negative feedback produced by previous exposure to continuous cocaine.  相似文献   

6.
Repeated daily intraperitoneal (i.p.) administrations of cadmium (CdCl2, 1 mg/kg per day for 5 days) increased striatal dopamine (DA) release (180% of controls) and turnover (150% of controls) in 13-day-old rats. Cd treatment also increased striatal metallothionein (MT) content (161%), Cd (127%) and lipid peroxidation (LPO, 190%). In addition, Cd treatment decreased striatal tyrosine hydroxylase (TH) activity (-28%), and such an effect may result from D-2 receptor blockade as a consequence of excessive dopamine release, since sulpiride (a specific D-2 receptor antagonist) administration to Cd-treated rats abolished the effect of Cd on TH. No effect was observed on striatal monoamine oxidase (MAO) activity. Dexamethasone (Dx) treatment increased striatal MT content and caused no effect on either DA release or turnover. However, Dx administration prevented the effects caused by Cd, including the increased DA release and enhanced striatal lipid peroxidation. These results indicate that toxic effects on the brain are to be expected as a result of Cd exposure and that Dx administration can attenuate them.  相似文献   

7.
The effects of chronic administration of antidepressant drugs (21-22 days s.c. via osmotic mini-pumps) on the behavioural responses of male Sprague-Dawley rats to (-)-quinpirole hydrochloride (0.05 mg kg-1 s.c., 5 min) and (+/-)-SKF 38393 hydrochloride (10 mg kg-1 s.c., 5 min) were investigated. Desipramine hydrochloride (10 mg kg-1 per day), phenelzine sulphate (10 mg kg-1 per day) and clorgyline hydrochloride (1 mg kg-1 per day) attenuated the suppression of locomotor activity induced by quinpirole, a dopamine D2-like receptor agonist, while clomipramine hydrochloride (10 mg kg-1 per day) was without effect. Yawning elicited by quinpirole was absent in phenelzine- and clorgyline-treated rats, but unaffected in rats treated chronically with desipramine and clomipramine. SKF 38393, a dopamine D1-like receptor agonist, significantly increased locomotor activity and time spent grooming in control animals. There were no significant effects of antidepressants on the behavioural responses to SKF 38393.  相似文献   

8.
The regulation of the dopamine (DA) receptors is of considerable interest, in part because treatment with antipsychotic drugs is known to upregulate striatal D2-like receptors. While previous studies have focused on the regulation of striatal DA receptors, less is known about the pharmacological regulation of cortical DA receptors. The purpose of this study was to examine the regulation of DA mRNA receptor expression in the cortex compared to the striatum following treatment with antipsychotic agents. Adult male Sprague-Dawley rats were injected daily with haloperidol (2 mg/kg/day), clozapine (20 mg/kg/day) or a control vehicle for a period of 14 days. Following treatment, brains were subjected to in situ hybridization for the mRNAs encoding the five dopamine receptors; only D1, D2, and D3 receptor mRNAs were detected in these regions. Haloperidol tended to either modestly upregulate or have no effect on dopamine receptor mRNAs detected in striatal structures, while clozapine generally downregulated these mRNAs. On the other hand, in the cortex, both drugs had striking effects on D1 and D2 mRNA levels. Cortical D1 mRNA was upregulated by haloperidol, but this effect was primarily restricted to cingulate cortex; clozapine also upregulated D1 mRNA, but primarily in parietal regions. Haloperidol downregulated D2 mRNA in the majority of cortical regions, but most dramatically in frontal and cingulate regions; clozapine typically upregulated this mRNA, but primarily in regions other than frontal and cingulate cortex. These results indicate that clozapine and haloperidol each have regionally-specific effects, and differentially regulate dopamine receptor mRNA expression in striatal and cortical regions of the rat brain.  相似文献   

9.
The locomotor stimulatory effects of the dopamine D1 receptor partial agonist SKF 38393 were examined in male C57B1/6J mice. Non-habituated mice showed marked dose-related (3-300 mg/kg, SC) locomotor stimulation. The time-course effect was biphasic at very high doses (100-300 mg/kg), with dose-related locomotor depression followed by dose-related long-term hyperlocomotion. For all doses, locomotor effects were detectable throughout the 4-h test period. To determine whether these effects were mediated by D1 receptor stimulation, effects of SKF 38393 were assessed in combination with behaviorally inactive and active doses (0.1 and 0.2 mg/kg, respectively) of the selective D1 receptor antagonist SCH 39166. Both doses of SCH 39166 attenuated the hyperlocomotion induced by 30 mg/kg of the agonist to a similar degree. However, neither dose was able to reverse either the depressant or the stimulatory effects of 300 mg/kg SKF 38393. These results demonstrate effects of the prototypical D1 agonist previously unobserved, and raise questions concerning the nature of agonist/antagonist interactions at the D1 receptor subtype.  相似文献   

10.
Many studies have used the D1 agonist SKF 38393 to characterize D1 receptor influences on firing rates in basal ganglia nuclei in vivo. However, SKF 38393 is a partial agonist and so may not be ideal for delineating D1 receptor effects. This study characterizes the effects of four full D1 agonists, SKF 82958 (chloro-APB), SKF 81297 (6-chloro-PB), dihydrexidine and A-77636, on the firing rates of midbrain dopamine and globus pallidus neurons. Recordings were done in fully anesthetized or paralyzed, locally anesthetized rats, and drugs were given systemically intravenously. Dihydrexidine, SKF 81297 and A-77636 were free of rate effects on midbrain dopamine neurons (up to 10.2 mg/kg) and also did not antagonize the inhibitory effects of quinpirole. In contrast, SKF 82958 strongly inhibited dopamine cells through activation of D2 autoreceptors (ED50 = 0.70 mg/kg). Of these drugs, SKF 82958 also was the only one to increase pallidal unit firing rates when given alone (at 5.0 but not 1.0 mg/kg); the other compounds appeared to be selective for postsynaptic D1 receptors. The results suggest that SKF 82958 may be more properly classified as a mixed D1/D2 agonist. In addition, all four agonists strongly potentiated the pallidal response to quinpirole, demonstrating a D1 receptor potentiation of D2 receptor effects. The results support the role of D1 receptors in the midbrain and globus pallidus as previously characterized with SKF 38393. The similar actions of partial and full D1 agonists in these systems support evidence for a D1 receptor reserve and possibly an effector system other than adenylate cyclase.  相似文献   

11.
The effects of the opioid receptor antagonist naloxone on behavioural responses to the dopamine D1 receptor agonist SKF 38393 ((+/-)-1-phenyl-2,3,4,5-tetrahydro-(1H)-3-benzazepine-7,8-diol hydrochloride) were assessed in the rat. SKF 38393 (5 mg/kg s.c.) induced grooming and vacuous chewing mouth movements. SKF 38393-induced grooming was dose-dependently attenuated by naloxone (0.375-1.5 mg/kg s.c), while vacuous chewing movements were unaffected. These findings suggest that dopamine D1 receptor agonist-induced grooming is dependent upon opioid systems, while vacuous chewing movements are likely to be mediated via different pathways.  相似文献   

12.
The increase in the concentration of homovanillic acid (HVA) in the haloperidol for 6 days compared to a single administration of the drug. The induction of tolerance is probably due to a functional modification of the striatal dopamine (DA)-receptors after repeated administration of the neuroleptic. Atropine given in combination with haloperidol enhances the induction of tolerance. Clozapine (20 mg/kg orally) had no such effect.  相似文献   

13.
There is good evidence that interference with the mesolimbic dopamine (DA) system results in impaired maternal responding in postpartum female rats. However, whether activation of the mesolimbic DA system is capable of promoting maternal behavior has not been investigated. This study examined whether increasing DA activity in various brain regions of pregnancy-terminated, naive female rats would stimulate the onset of maternal behavior. Experiments 1 and 2 examined the effects of microinjection of various doses (0, 0.2, or 0.5 μg/0.5 μl/side) of a D? DA receptor agonist, SKF 38393, or a D? DA receptor agonist, quinpirole, into the nucleus accumbens (NA) on latency to show full maternal behavior, and Experiment 3 determined the effects of SKF 38393 injection into a control site. Finally, because the medial preoptic area (MPOA) is also important for maternal behavior, receives DA input, and expresses DA receptors, the authors examined whether microinjection of SKF 38393 into MPOA was capable of stimulating the onset of maternal behavior. Results indicated that microinjection of SKF 38393 into either the NA or the MPOA facilitates maternal responding in pregnancy-terminated rats. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

14.
Using Pavlovian conditioned increases in the amplitude of the acoustic startle reflex as a behavioral indicator of fear motivation, the authors previously showed a resistance to extinction after repeated associations of cocaine with the fear-evoking conditioned stimulus (CS). In Experiment 1, acute administration of cocaine, amphetamine, and the dopamine (DA) D1 receptor agonist SKF 38393 produced a similar fear enhancement. In Experiment 2, a noncontingent injection of cocaine and SKF 38393 provoked a CS potentiation of acoustic startle in fear-extinguished laboratory rats. Potential behavioral, neurochemical, and neuroendocrine explanations for the effects of psychomotor stimulants on conditional fear were discussed. It was suggested that DA agonist drugs increase fear expression possibly by activating mesoamygdaloid associative neurocircuitry involved in excitatory conditioned fear reactions.  相似文献   

15.
16.
We examined the modulatory effect of serotonergic activities on haloperidol-induced up-regulation of dopamine D2 receptors in rat striatum. Chronic treatment with haloperidol (0.1, 0.5 mg/kg, i.p., 3 weeks) increased the number of dopamine D2 receptors, while no increase was observed with atypical antipsychotic drugs clozapine (10 mg/kg) and ORG 5222 (0.25 mg/kg). Chronic treatment with MK 212, a serotonin (5-HT)2A/2C receptor agonist (2.5 mg/kg), or with citalopram, a 5-HT reuptake inhibitor (10 mg/kg), potentiated the haloperidol (0.1 mg/kg)-induced up-regulation of dopamine D2 receptor, while that with (+/-)-8-hydroxy-2-(di-n-propylamino) tetralin (8-OH-DPAT), a 5-HT1A receptor agonist (0.1 mg/kg), had no influence on the dopamine D2 receptor up-regulation. Co-administration of ritanserin (1 mg/kg), a 5-HT2A/2C receptor antagonist, with a low dose of haloperidol (0.1 mg/kg), but not with a high dose of the agent (0.5 mg/kg), attenuated the dopamine D2 receptor up-regulation. Drug occupation of 5-HT2A and dopamine D2 receptors in vivo examined with use of N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline (EEDQ) was 69.8% and 45.1%, respectively, after the acute administration of haloperidol (0.1 mg/kg) plus ritanserin (1 mg/kg). This profile that 5-HT2A receptors were highly occupied compared with dopamine D2 receptors was similar to that of clozapine or ORG 5222. These results suggest that potent 5-HT2A receptor antagonism versus weak dopamine D2 receptor blockade may be involved in the absence of up-regulation of dopamine D2 receptors after chronic treatment with clozapine or ORG 5222.  相似文献   

17.
Using Pavlovian conditioned increases in the amplitude of the acoustic startle reflex as a behavioral indicator of fear motivation, the authors previously showed a resistance to extinction after repeated associations of cocaine with the fear-evoking conditioned stimulus (CS). In Experiment 1, acute administration of cocaine, amphetamine, and the dopamine (DA) D? receptor agonist SKF 38393 produced a similar fear enhancement. In Experiment 2, a noncontingent injection of cocaine and SKF 38393 provoked a CS potentiation of acoustic startle in fear-extinguished laboratory rats. Potential behavioral, neurochemical, and neuroendocrine explanations for the effects of psychomotor stimulants on conditional fear were discussed. It was suggested that DA agonist drugs increase fear expression possibly by activating mesoamygdaloid associative neurocircuitry involved in excitatory conditioned fear reactions. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

18.
1. The presence of dye coupling between striatal neurons was investigated using in vivo intracellular recording and dye injection in adult rats. In 17% of the cases in which a single striatal neuron was injected with Lucifer yellow, more than one labeled neuron was recovered. In control rats, this dye coupling was observed only between single pairs of medium spiny neurons and only when the neuron injected exhibited the Type II response profile as defined by paired-pulse stimulation of corticostriatal afferents. 2. After intravenous administration of the D1/D2 agonist apomorphine at a behaviorally effective dose (i.e., 0.1-0.3 mg/kg), an increase in the incidence (from 17% to 82% of injected cells) and extent (from 2 cells to 3-7 cells labeled per injection) of dye coupling was observed. This effect was mediated by D2 receptor stimulation because administration of the D2 agonist quinpirole caused similar alterations in the incidence and extent of dye coupling (66% coupled). In contrast, administration of the D1 agonist SKF 38393 or the D1 antagonist SCH 23390 did not result in any significant alteration in dye coupling. 3. In control rats, the entire somatodendritic regions of dye-coupled neurons were found to be localized within single matrix compartments of the striatum. However, after intravenous administration of apomorphine or quinpirole, clusters of dye-coupled neurons were found to extend across the patch/matrix boundary. Moreover, dye coupling was observed after injecting cells exhibiting either the Type I or the Type II response profile. 4. In response to D2 receptor stimulation, both the extent and the pattern of coupling between striatal neurons is altered, resulting in direct coupling between neurons that are otherwise functionally and anatomically segregated in the control animal.  相似文献   

19.
Facial electromyography (EMG) coupled with visual observation was used to investigate spontaneous and drug induced perioral movements in freely moving rats. Four separate perioral behaviours were identified; facial tremor, purposeless chewing, gaping and yawning. Facial tremor, yawning and gaping but not purposeless chewing produced characteristic EMG signals. Normal rats displayed a low level of purposeless chewing, occasional bursts of facial tremor but not gaping or yawning. Each burst of facial tremor was accompanied by a transient increase in purposeless chewing. Administration of the D1 agonist SKF 38393 induced a dose related increase in bursts of facial tremors and consequently an increase in the total number of purposeless chews. Gaping and yawning were not induced by SKF 38393 administration. Administration of the cholinesterase inhibitor physostigmine (0.1-0.4 mg/kg) induced a dose related increase in the total number of purposeless chews, but primarily these were not associated with facial tremor. Administration of physostigmine also increased gaping and yawning. Administration of the D1 antagonist SCH 23390 almost abolished facial tremor in normal treated rats but only partially reduced that induced by SKF 38393 and physostigmine. SCH 23390 reduced purposeless chewing in SKF 38393 treated rats but not in normal or physostigmine treated animals. Administration of the cholinergic antagonist atropine almost abolished facial tremor in normal and physostigmine treated rats, but only reduced by 46% that induced by SKF 38393. Atropine reduced purposeless chewing in normal, physostigmine and SKF 38393 treated animals. Physostigmine induced gaping and yawning were abolished by atropine administration.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Age-dependent alterations in behavioral and neuronal functioning were assessed in young (2-3 month), middle-aged (12 month), and aged (24 month) Fischer 344 rats treated with the indirect dopamine agonist amphetamine (2.25 or 5 mg/kg), the D1 agonist SKF 38393 (7.5, 15, 30 mg/kg), or the D2 agonist quinpirole (0.3, 1.0, 3.0 mg/kg). Drug-induced changes in activity and stereotypy were measured during a 90-min testing session, with Fos immunohistochemistry being used to assess the neuronal response to dopamine agonist treatment. As expected, aged rats given amphetamine (5 mg/kg) had fewer activity counts and higher stereotypy scores than young rats. Middle-aged rats also had fewer activity counts but were similar in stereotypy scores to young rats. Amphetamine also induced different patterns of Fos immunoreactivity in the neostriatum and nucleus accumbens of young and aged rats, as Fos expression in aged rats exhibited a distinctive dorsal to ventral pattern of decline. In general, SKF 38393 had few age-related actions, although aged rats did show a slight relative increase in stereotypy. In contrast, the D2 agonist quinpirole substantially enhanced the motor activity and Fos expression of young rats, while only modestly affecting aged rats. Hence, these results suggest that the D2 receptor is more vulnerable to the effects of aging than the D1 receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号