首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
采用AlCl_3-EMIC离子液体在室温下对国产低活性铁素体/马氏体钢(CLAM钢)表面进行镀铝处理。研究了镀前处理对镀层-基体界面的影响。采用SEM、EDS分析了不同电流密度对镀层表面形貌与界面形貌的影响,同时与脉冲电镀所得结果进行了比较。结果表明:在电化学前处理过程中,增大电流密度会增强镀层与基底结合力;电流脉冲的加入可以减弱溶液浓差极化现象,增加表面组织致密性;镀层晶粒大小随电流密度增大而减小,镀层球状组织随电流密度增大而增大。在优化的电镀工艺下(前处理电流密度控制在10 mA/cm~2以上,电镀电流密度控制在10~20 mA/cm~2,对应的电镀时间45~95 min,优选脉冲电流电镀),得到的铝镀层表面光滑,致密,结合力强,厚度可控。  相似文献   

2.
利用陶瓷粒子摩擦辅助无裂纹硬铬电镀工艺技术进行脉冲电镀硬铬试验。通过改变电流密度、阴极转速、镀液温度、脉冲频率及占空比等参数,在300M钢基体上进行基础试验,研究了无裂纹工艺对电镀层显微硬度和镀层耐腐蚀性的影响,并对试验工艺参数进行了优化,最终得到结晶晶粒细致、镀层显微硬度高、表面耐腐性好的无裂纹电镀层。采用SEM测试镀层的微观形貌,无裂纹工艺制备的镀层外观光亮平整、组织均匀、无裂纹。  相似文献   

3.
传统的氰化物镀铜工艺会对环境造成极大的危害,钛合金无氰镀铜技术具有较高的研究价值。采用无氰化物硫酸盐镀铜技术在TC4钛合金表面制备铜镀层,利用扫描电子显微镜和能谱仪对其镀层形貌、成分、结合力、磨损形貌进行分析,并利用电化学方法和摩擦磨损试验研究其抗蚀性与耐磨性。结果表明:无氰化物镀铜技术在TC4钛合金表面电镀铜可获得表面均匀致密,结合力良好的镀层;TC4钛合金表面电镀铜后,摩擦因数由0.520降至0.381,可见钛合金表面铜镀层通过减摩作用能有效的改善和提高其耐摩擦磨损性能。TC4钛合金镀铜和未镀铜表面均存在钝化区,两者维钝电流密度分别为1×10-2 A/cm2和4×10-5 A/cm2,均有较好的抗腐蚀性能,TC4钛合金镀铜后的表面抗腐蚀性能较基体有所降低。  相似文献   

4.
目的 研究有无磁场条件和垂直、平行两种磁场方向对脉冲电沉积制备Ni-ZrO2纳米复合镀层性能的影响。方法 以45#钢作为基体,采用脉冲电沉积和磁场-脉冲电沉积法成功制备Ni-ZrO2纳米复合镀层。利用扫描电镜(SEM)、能谱仪(EDS)、X射线衍射仪(XRD)、原子力显微镜(AFM)观察纳米复合镀层的表面形貌、微观结构和表面粗糙度,利用显微硬度计、划痕仪、摩擦磨损试验机对纳米复合镀层进行显微硬度、结合力和摩擦磨损性能等力学性能研究。结果 相同工艺条件下,垂直磁场-脉冲电沉积条件制备的Ni-ZrO2纳米复合镀层的晶粒形状为金子塔状,镀层表面粗糙度有所改善,复合镀层显微硬度值最高,为370HV。平行磁场-脉冲电沉积条件下制备的Ni-ZrO2纳米复合镀层表面平整,均匀致密,复合镀层中Zr的质量分数为8.27%,表面粗糙度Ra和Rq值分别为82 nm和105 nm,镀层结合力为337 N,磨损量低于其他两种镀层的磨损量。结论 施加磁场后,在磁场MHD效应作用下,纳米复合镀层表面形貌平整,均匀致密,显微硬度提高,并且与基体结合性能和耐磨性都优于无磁场条件下制备的纳米复合镀层。平行方向磁场对Ni-ZrO2纳米复合镀层的力学性能有更明显的促进作用。  相似文献   

5.
不锈钢表面镀铝-热氧化处理制备氧化铝膜及其性能   总被引:1,自引:0,他引:1  
采用无机熔融盐电镀铝、热浸镀铝工艺联合的方法在钢基材表面制备了一层平整、连续的铝镀层,研究了铝镀层在不同氧化时间下的氧化行为。利用X射线衍射仪(XRD)、扫描电镜(SEM)和能谱分析(EDS)对氧化层的形貌和成分进行分析,并考察了氧化层的硬度和耐腐蚀性能。结果表明:将无机熔融盐电镀铝法和热浸镀铝法相结合可获得良好的铝镀层;铝镀层在900℃下热处理20 h后,可获得连续致密的Al2O3膜;Al2O3层有效提高了钢基材的表面硬度和耐腐蚀性能。  相似文献   

6.
采用典型的氰化电镀与无氰刷镀工艺在隔离开关触头的基材表面成功制备了银镀层,比较了两种工艺条件下触头镀银层表面形貌、显微硬度、厚度均匀性、结合力及在3.5%氯化钠溶液中耐蚀性等性能的差异。结果表明,无氰刷镀银层的显微硬度达130 HV,与氰化电镀银层相当,满足DL/T 486-2010硬度要求;经刻划栅格试验镀层未剥落,基体结合力接近或达到氰化电镀银层水平。但无氰刷镀银层存在漏镀孔洞,致使该镀层在3.5%氯化钠溶液中腐蚀速率达59.6μm/a,相同腐蚀介质中的氰化电镀银层仅为1.5μm/a,且无氰刷镀银层的厚度均匀性不够稳定。  相似文献   

7.
采用电镀法在碳纤维表面沉积一层纯Ni镀层,然后将纤维剪短,采用化学镀法使短纤维表面以及两端包覆一层Ni-P合金镀层,并使纤维表面金属层加厚,来满足保护纤维的需要.通过不同正交体系研究碳纤维增重率,得到了优化的镀镍工艺.观察了镀层的表面形貌,测试了镀层的结合力,并对镀层的成分进行了分析.结果表明,纤维表面镀层均匀、致密、表面光亮和结合力强;电镀获得了纯Ni镀层,而复合镀获得了Ni-P合金镀层.  相似文献   

8.
脉冲参数对等离子电沉积镍镀层结构和性能的影响   总被引:1,自引:0,他引:1  
采用高频脉冲电源在纯铜基材上以等离子电沉积技术制备出了金属镍镀层,研究了高频脉冲频率以及占空比变化对等离子镀镍层结构和性能的影响。对镀层进行了SEM,显微硬度以及划痕结合力的表征。结果表明,随着高频脉冲频率和占空比的增加,镀层表面的熔融态形貌逐渐减少,镀层逐渐变得致密,表面硬度与结合力值也相应提高。通过讨论脉冲电源的能量作用方式,分析了频率及占空比对等离子电沉积镍层表面结构及性能的影响规律。  相似文献   

9.
利用双脉冲电沉积技术在碳钢基体上制备了Ni-P-SnO2纳米复合镀层。以沉积速率、显微硬度及表面形貌为考察指标,获得制备Ni-P-SnO2纳米复合镀层的最优工艺条件:2g/L纳米SnO2、电流密度2A/dm2、镀液温度60℃、电镀时间30~40min、占空比20%~30%、频率100~150 Hz。通过SEM、XRD技术对Ni-P-SnO2复合镀层的表面形貌、相结构进行了表征;通过电化学测量技术对镀层的电化学行为进行了研究。结果表明:纳米复合镀层表面完整,没有明显的缺陷,纳米SnO2均匀地分布在Ni-P镀层中,硬度高,其耐蚀性能虽不及Ni-P镀层,缓蚀率也高达90%以上。  相似文献   

10.
采用环保三价铬电镀工艺对窄深槽类零件进行电镀铬后,再对铬镀层进行不同温度(0~400℃)的热处理,研究热处理温度对窄深槽类零件环保铬镀层组织和性能的影响,并对热处理前后铬镀层的微观形貌、相结构、显微硬度、结合力和耐磨性进行了分析.结果表明:镀态镀层表面存在微裂纹,经热处理后微裂纹间隙扩大,并且随着温度的升高,镀层结构逐...  相似文献   

11.
In as-welded state, each region of 2219 aluminum alloy TIG-welded joint shows diff erent microstructure and microhardness due to the diff erent welding heat cycles and the resulting evolution of second phases. After the post-weld heat treatment, both the amount and the size of the eutectic structure or θ phases decreased. Correspondingly, both the Cu content in α-Al matrix and the microhardness increased to a similar level in each region of the joint, and the tensile strength of the entire joint was greatly improved. Post-weld heat treatment played the role of solid solution strengthening and aging strengthening. After the post-weld heat treatment, the weld performance became similar to other regions, but weld reinforcements lost their reinforcing eff ect on the weld and their existence was more of an adverse eff ect. The joint without weld reinforcements after the post-weld heat treatment had the optimal tensile properties, and the specimens randomly crack in the weld zone.  相似文献   

12.
After nearly two years' tense construction, the first phase of industrialized base of Shenyang Research Institute of Foundry (SRIF), located at the Tiexi Casting and Forging Industrial Park in the west of Tiexi District, has now been completed and formally put into operation.  相似文献   

13.
Institute of Process Engineering, Chinese Academy of Sciences, China, has proposed a method for oxidative leaching of chromite with potassium hydroxide. Understanding the mechanism of chromite decomposition, especially in the potassium hydroxide fusion, is important for the optimization of the operating parameters of the oxidative leaching process. A traditional thermodynamic method is proposed and the thermal decomposition and the reaction decomposition during the oxidative leaching of chromite with KOH and oxygen is discussed, which suggests that chromite is mainly destroyed by reactions with KOH and oxygen. Meanwhile, equilibrium of the main reactions of the above process was calculated at different temperatures and oxygen partial pressures. The stable zones of productions, namely, K2CrO4 and Fe2O3, increase with the decrease of temperature, which indicates that higher temperature is not beneficial to thermodynamic reactions. In addition, a comparison of the general alkali methods is carried out, and it is concluded that the KOH leaching process is thermodynamically superior to the conventional chromate production process.  相似文献   

14.
The effect of isochronal heat treatments for 1h on variation of damping, hardness and microstructural change of the magnesium wrought alloy AZ61 was investigated. Damping and hardness behaviour could be attributed to the evolution of precipitation process. The influence of precipitation on damping behaviour was explained in the framework of the dislocation string model of Granato and Lücke.  相似文献   

15.
The Lanthanum-doped bismuth ferrite–lead titanate compositions of 0.5(Bi LaxFe1-xO3)–0.5(Pb Ti O3)(x = 0.05,0.10,0.15,0.20)(BLxF1-x-PT) were prepared by mixed oxide method.Structural characterization was performed by X-ray diffraction and shows a tetragonal structure at room temperature.The lattice parameter c/a ratio decreases with increasing of La(x = 0.05–0.20) concentration of the composites.The effect of charge carrier/ion hopping mechanism,conductivity,relaxation process and impedance parameters was studied using an impedance analyzer in a wide frequency range(102–106Hz) at different temperatures.The nature of Nyquist plot confirms the presence of bulk effects only,and non-Debye type of relaxation processes occurs in the composites.The electrical modulus exhibits an important role of the hopping mechanism in the electrical transport process of the materials.The ac conductivity and dc conductivity of the materials were studied,and the activation energy found to be 0.81,0.77,0.76 and 0.74 e V for all compositions of x = 0.05–0.20 at different temperatures(200–300 °C).  相似文献   

16.
The orientation relationships(ORs)between the martensite and the retained austenite in low-and medium-carbon steels after quenching–partitioning–tempering process were studied in this work.The ORs in the studied steels are identified by selected-area electron diffraction(SAED)as either K–S or N–W ORs.Meanwhile,the ORs were also studied based on numerical fitting of electron backscatter diffraction data method suggested by Miyamoto.The simulated K–S and N–W ORs in the low-index directions generally do not well coincide with the experimental pole figure,which may be attributed to both the orientation spread from the ideal variant orientations and high symmetry of the low-index directions.However,the simulated results coincide well with experimental pole figures in the high-index directions{123}_(bcc).A modified method with simplicity based on Miyamoto’s work was proposed.The results indicate that the ORs determined by modified method are similar to those determined by Miyamoto’method,that is,the OR is near K–S OR for the low-carbon Q–P–T steel,and with the increase of carbon content,the OR is closer to N–W OR in medium-carbon Q–P–T steel.  相似文献   

17.
This work was to reveal the residual stress profile in electron beam welded Ti-6Al-4V alloy plates(50 mm thick) by using finite element and contour measurement methods.A three-dimensional finite element model of 50-mmthick titanium component was proposed,in which a column–cone combined heat source model was used to simulate the temperature field and a thermo-elastic–plastic model to analyze residual stress in a weld joint based on ABAQUS software.Considering the uncertainty of welding simulation,the computation was calibrated by experimental data of contour measurement method.Both test and simulated results show that residual stresses on the surface and inside the weld zone are significantly different and present a narrow and large gradient feature in the weld joint.The peak tensile stress exceeds the yield strength of base materials inside weld,which are distinctly different from residual stress of the thin Ti-6Al-4V alloy plates presented in references before.  相似文献   

18.
Silicon carbide nanoparticle-reinforced nickel-based composites(Ni–Si CNP),with a Si CNPcontent ranged from1 to 3.5 wt%,were prepared using mechanical alloying and spark plasma sintering.In addition,unreinforced pure nickel samples were also prepared for comparative purposes.To characterize the microstructural properties of both the unreinforced pure nickel and the Ni–Si CNPcomposites transmission electron microscopy(TEM) was used,while their mechanical behavior was investigated using the Vickers pyramid method for hardness measurements and a universal tensile testing machine for tensile tests.TEM results showed an array of dislocation lines decorated in the sintered pure nickel sample,whereas,for the Ni–Si CNPcomposites,the presence of nano-dispersed Si CNPand twinning crystals was observed.These homogeneously distributed Si CNPwere found located either within the matrix,between twins or on grain boundaries.For the Ni–Si CNPcomposites,coerced coarsening of the Si CNPassembly occurred with increasing Si CNPcontent.Furthermore,the grain sizes of the Ni–Si CNPcomposites were much finer than that of the unreinforced pure nickel,which was considered to be due to the composite ball milling process.In all cases,the Ni–Si CNPcomposites showed higher strengths and hardness values than the unreinforced pure nickel,likely due to a combination of dispersion strengthening(Orowan effects) and particle strengthening(Hall–Petch effects).For the Ni–Si CNPcomposites,the strength increased initially and then decreased as a function of Si CNPcontent,whereas their elongation percentages decreased linearly.Compared to all materials tested,the Ni–Si CNPcomposite containing 1.5% Si C was found more superior considering both their strength and plastic properties.  相似文献   

19.
A new method was introduced to achieve directional growth of Sn crystals. Microstructures in liquid(Pb)/liquid(Sn) diffusion couples were investigated under various static magnetic fields. Results show that the β-Sn crystals mainly reveal an irregular dendritic morphology without or with a relatively low static magnetic field(B0.3 T). When the magnetic field is increased to 0.5 T, the β-Sn dendrites close to the final stage of growth begin to show some directional character. With a further increase in the magnetic field to a higher level(0.8–5 T), the β-Sn dendrites have an enhanced directional growth character, but the dendrites show a certain deflection. As the magnetic field is increased to 12 T, the directional growth of the β-Sn dendrites in the center of the couple is severely destroyed. The mechanism of the directional growth of the β-Sn crystals and the deflection of the β-Sn crystals with the application of static magnetic field was tentatively discussed.  相似文献   

20.
韩磊 《腐蚀与防护》2015,36(1):84-90,94
综述了常见的电化学噪声数据处理方法,介绍了直流趋势剔除、统计分析、快速傅立叶变换(FFT)法计算功率谱密度(PSD)以及小波变换处理电化学噪声信号的基本过程,并阐释了各种数学处理及所得参数的物理意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号