共查询到18条相似文献,搜索用时 62 毫秒
1.
针对低资源训练数据条件下深层神经网络(Deep neural network,DNN)特征声学建模性能急剧下降的问题,提出两种适合于低资源语音识别的深层神经网络特征提取方法.首先基于隐含层共享训练的网络结构,借助资源较为丰富的语料实现对深层瓶颈神经网络的辅助训练,针对BN层位于共享层的特点,引入Dropout,Maxout,Rectified linear units等技术改善多流训练样本分布不规律导致的过拟合问题,同时缩小网络参数规模、降低训练耗时;其次为了改善深层神经网络特征提取方法,提出一种基于凸非负矩阵分解(Convex-non-negative matrix factorization,CNMF)算法的低维高层特征提取技术,通过对网络的权值矩阵分解得到基矩阵作为特征层的权值矩阵,然后从该层提取一种新的低维特征.基于Vystadial 2013的1小时低资源捷克语训练语料的实验表明,在26.7小时的英语语料辅助训练下,当使用Dropout和Rectified linear units时,识别率相对基线系统提升7.0%;当使用Dropout和Maxout时,识别率相对基线系统提升了12.6%,且网络参数数量相对其他系统降低了62.7%,训练时间降低了25%.而基于矩阵分解的低维特征在单语言训练和辅助训练的两种情况下都取得了优于瓶颈特征(Bottleneck features,BNF)的识别率,且在辅助训练的情况下优于深层神经网络隐马尔科夫识别系统,提升幅度从0.8%~3.4%不等. 相似文献
2.
为了在语音转换过程中充分考虑语音的帧间相关性,提出了一种基于卷积非负矩阵分解的语音转换方法.卷积非负矩阵分解得到的时频基可较好地保存语音信号中的个人特征信息及帧间相关性.利用这一特性,在训练阶段,通过卷积非负矩阵分解从训练数据中提取源说话人和目标说话人相匹配的时频基.在转换阶段,通过时频基替换实现对源说话人语音的转换.相对于传统方法,本方法能够更好地保存和转换语音帧间相关性.实验仿真及主、客观评价结果表明,与基于高斯混合模型、状态空间模型的语音转换方法相比,该方法具有更好的转换语音质量和转换相似度. 相似文献
3.
针对非负矩阵分解稀疏性不够,通过引入平滑矩阵调节字典矩阵和系数矩阵的稀疏性,提出基于非平滑非负矩阵分解语音增强算法。算法通过语音和噪声的先验字典学习构造联合字典矩阵;然后通过非平滑非负矩阵分解更新带噪语音在联合字典矩阵下的投影系数实现语音增强;同时通过滑动窗口法实时更新先验噪声字典。仿真结果表明,该算法相对非负矩阵分解语音增强算法和MMSE算法具有更好的抑制噪声能力。 相似文献
4.
低信噪比非稳态噪声环境中的语音增强仍是一个开放且具有挑战性的任务. 为了提高传统的基于非负矩阵分解(nonnegative matrix factorization, NMF)的语音增强算法性能, 同时考虑到语音信号的时频稀疏特性和非稳态噪声信号的低秩特性, 本文提出了一种基于多重约束的非负矩阵分解语音增强算法(multi-constraint nonnegative matrix factorization speech enhancement, MC–NMFSE). 在训练阶段, 采用干净语音训练数据集和噪声训练数据集分别构建语音字典和噪声字典. 在语音增强阶段, 在非负矩阵分解目标函数中增加语音分量的稀疏性约束和噪声信号的低秩性约束条件, MC–NMFSE能够更好地从带噪语音中获得语音分量的表示, 从而提高语音增强效果. 通过实验表明, 在大量不同非平稳噪声条件和不同信噪比条件下, 与传统的基于NMF的语音增强方法相比, MC–NMFSE能获得较低的语音失真和更好的非稳态噪声抑制能力. 相似文献
5.
非负矩阵部分联合分解(Nonnegative matrix partial co-factorization, NMPCF)将指定源频谱作为边信息参与混合信号频谱的联合分解, 以帮助确定指定源的基向量进而提高信号分离性能.卷积非负矩阵分解(Convolutive nonnegative matrix factorization, CNMF)采用卷积基分解的方法进行矩阵分解, 在单声道语音分离方面取得较好的效果.为了实现强噪声条件下的语音分离, 本文结合以上两种算法的优势, 提出一种基于卷积非负矩阵部分联合分解(Convolutive nonnegative partial matrix co-factorization, CNMPCF)的单声道语音分离算法.本算法首先通过基音检测算法得到混合信号的语音起始点, 再据此确定混合信号中的纯噪声段, 最后将混合信号频谱和噪声频谱进行卷积非负矩阵部分联合分解, 得到语音基矩阵, 进而得到分离的语音频谱和时域信号.实验中, 混合语音信噪比(Signal noise ratio, SNR)选择以-3 dB为间隔从0 dB至-12 dB共5种SNR.实验结果表明, 在不同噪声类型和噪声强度条件下, 本文提出的CNMPCF方法相比于以上两种方法均有不同程度的提高. 相似文献
6.
针对基于非负矩阵分解(non-negative matrix factorization, NMF)的语音增强方法在低信噪比部分和无结构特征的清音部分会引入失真这一问题,利用语音信号在时频域呈现的稀疏特性和深度神经网络在语音增强应用中表现出的谱重构特性,提出了一种联合稀疏非负矩阵分解和深度神经网络的单通道语音增强方法.首先对带噪语音的幅度谱进行非负矩阵分解得到与语音字典和噪声字典相对应的稀疏编码矩阵,其中语音字典和噪声字典通过对纯净语音和噪声进行训练预先得到,以维纳滤波方法恢复出语音成分的主要结构;然后利用深度神经网络在语音增强中表现出的时频保持特性,通过深层网络学习经维纳滤波分离出的语音的对数幅度谱和理想纯净语音对数幅度谱之间的非线性映射函数,进而恢复出语音结构的缺失成分.实验结果表明:所提方法可以有效抑制噪声且较好地恢复出语音成分,在语音感知质量和对数谱失真性能评价指标上均优于基线方法. 相似文献
7.
提出一种基于交替方向乘子法的(Alternating Direction Method of Multipliers;ADMM)稀疏非负矩阵分解语音增强算法;该算法既能克服经典非负矩阵分解(Nonnegative Matrix Factorization;NMF)语音增强算法存在收敛速度慢、易陷入局部最优等问题;也能发挥ADMM分解矩阵具有的强稀疏性。算法分为训练和增强两个阶段:训练时;采用基于ADMM非负矩阵分解算法对噪声频谱进行训练;提取噪声字典;保存其作为增强阶段的先验信息;增强时;通过稀疏非负矩阵分解算法;从带噪语音频谱中对语音字典和语音编码进行估计;重构原始干净的语音;实现语音增强。实验表明;该算法速度更快;增强后语音的失真更小;尤其在瞬时噪声环境下效果显著。 相似文献
8.
利用欧几里得距离衡量非负矩阵非负满秩分解的近似度,将其转化为最小二乘法求最优问题。并用VC6.0与Lingo对算法进行程序实现,可以为非负矩阵分解应用研究提供一些参考。 相似文献
9.
非负矩阵分解算法可以作为一种新型的特征抽取方法。将非负矩阵分解算法和现有的其它三种现有的特征抽取算法进行详细比较:奇异值分解方法和非负矩阵分解方法本质上是不同的两种特征抽取方法,非负特性使得由非负矩阵分解比奇异值分解方法更接近人们的认知习惯。基于聚类的特征提取方法是一种简化了的非负矩阵分解算法;基于概率的特征提取方法等价于非负矩阵分解在特定约束条件下的变体。通过比较充分体现了非负矩阵分解算法的非负性和局部性特点。 相似文献
11.
针对不同声学特征之间的信息互补性以及声学建模中各任务间的关联性,提出了一种多特征关联的深层神经网络声学建模方法,该方法首先借鉴深层神经网络(deep neural network, DNN)多模态以及多任务学习思想,通过共享DNN部分隐含层为不同特征声学模型间建立关联,从而挖掘不同学习任务间隐含的共同解释性因素,实现知识迁移以及性能的相互促进;其次利用低秩矩阵分解方法减少模型估计参数的数量,加快模型训练速度,并对不同特征的识别结果采用ROVER(recognizer output voting error reduction)融合算法进行融合,进一步提高系统识别性能.基于TIMIT的连续语音识别实验表明,采用关联声学建模方法,不同特征的识别性能均要优于独立建模时的识别性能.在音素错误率(phone error rates, PER)指标上,关联声学建模下的ROVER融合结果要比独立建模下的ROVER融合结果相对降低约4.6%. 相似文献
12.
深度语音信号与信息处理:研究进展与展望 总被引:1,自引:0,他引:1
论文首先对深度学习进行简要的介绍,然后就其在语音信号与信息处理研究领域的主要研究方向,包括语音识别、语音合成、语音增强的研究进展进行了详细的介绍。语音识别方向主要介绍了基于深度神经网络的语音声学建模、大数据下的模型训练和说话人自适应技术;语音合成方向主要介绍了基于深度学习模型的若干语音合成方法;语音增强方向主要介绍了基于深度神经网络的若干典型语音增强方案。论文的最后我们对深度学习在语音信与信息处理领域的未来可能的研究热点进行展望。 相似文献
13.
基于深度学习的语音识别技术现状与展望 总被引:1,自引:0,他引:1
首先对深度学习的发展历史以及概念进行简要的介绍。然后回顾最近几年基于深度学习的语音识别的研究进展。这一部分内容主要分成以下5点进行介绍:声学模型训练准则,基于深度学习的声学模型结构,基于深度学习的声学模型训练效率优化,基于深度学习的声学模型说话人自适应和基于深度学习的端到端语音识别。最后就基于深度学习的语音识别未来可能的研究方向进行展望。 相似文献
14.
智能语音技术包含语音识别、自然语言处理、语音合成三个方面的内容,其中语音识别是实现人机交互的关键技术,识别系统通常需要建立声学模型和语言模型。神经网络的兴起使声学模型数量急剧增加,基于神经网络的声学模型与传统识别模型相结合的方式,极大地推动了语音识别的发展。语音识别作为人机交互的前端,具有许多研究方向,文中着重对语音识别任务中的文本识别、说话人识别、情绪识别三个方向的声学模型研究现状进行归纳总结,尽可能对语音识别技术的演化进行细致介绍,为以后的相关研究提供有价值的参考。同时对目前语音识别的主流方法进行概括比较,介绍了端到端的语音识别模型的优势,并对发展趋势进行分析展望,最后提出当前语音识别任务中面临的挑战。 相似文献
15.
语音情感识别在人机交互过程中发挥极为重要的作用,近年来备受关注.目前,大多数的语音情感识别方法主要在单一情感数据库上进行训练和测试.然而,在实际应用中训练集和测试集可能来自不同的情感数据库.由于这种不同情感数据库的分布存在巨大差异性,导致大多数的语音情感识别方法取得的跨库识别性能不尽人意.为此,近年来不少研究者开始聚焦跨库语音情感识别方法的研究.本文系统性综述了近年来跨库语音情感识别方法的研究现状与进展,尤其对新发展起来的深度学习技术在跨库语音情感识别中的应用进行了重点分析与归纳.首先,介绍了语音情感识别中常用的情感数据库,然后结合深度学习技术,从监督、无监督和半监督学习角度出发,总结和比较了现有基于手工特征和深度特征的跨库语音情感识别方法的研究进展情况,最后对当前跨库语音情感识别领域存在的挑战和机遇进行了讨论与展望. 相似文献
16.
对话行为可以在一定程度上表达说话人的意图,对话行为分类是机器翻译、人机交互设计等领域的基本要求,对于语音识别领域具有重要的意义。针对噪音环境下的对话行为分类提出了一种新的模型,通过快速噪声估计谱减法进行语音增强,采用长短期记忆网络对经过卷积神经网络语言嵌入后的词向量进行学习,从而得到具有抗噪性的对话行为分类模型。使用中文日常用语语料库的样本进行了多组对比试验,以测试新模型的抗噪声能力和对话行为分类的准确性。结果表明在0 dB的噪声环境下,模型的对话行为分类准确度达到95.5%,当噪声增加到5 dB时仍能保持94.1%,为噪音环境下的对话分类提供了一种新的模型。 相似文献
17.
针对前馈神经网络难以处理时序数据的问题,提出将双向循环神经网络(BiRNN)应用在自动语音识别声学建模中。首先,应用梅尔频率倒谱系数进行特征提取;其次,采用双向循环神经网络作为声学模型;最后,测试不同参数对系统性能的影响。在TIMIT数据集上的实验结果表明,与基于卷积神经网络和深度神经网络的声学模型相比,识别率分别提升了1.3%和4.0%,说明基于双向循环神经网络的声学模型具有更好的性能。 相似文献
18.
基于两级BP模型的普通话声调识别系统 总被引:1,自引:2,他引:1
普通话声调识别参数除常用的基音轮廓外,基音的一阶差分、能量及能量的一阶差分等也具一定的声调特征。实验结果表明:如果将各种参数同时作为一个BP模型的输入参数,声调识别率不但没有提高,反而显著下降,因此,该文提出了将各种参数分别训练一个各自的BP网络,再将这些网络的输出作为另一高层BP网络的输入的普通话声调识别方法。另外,针对上声的特点提出了一种改进的基音平滑算法。这些方法的运用使系统的声调识别率达到90.05%。 相似文献