首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
针对细微颗粒粉尘的治理问题,设计出模拟湿式除尘系统的实验平台,采用清水作为雾化介质,研究了hyd型低压精细雾化除尘喷嘴在孔径为0.4、0.5和0.8 mm时,不同雾化压力参数下流量、雾化角、雾化粒径等雾化特性。采用容积法测量喷嘴流量特性,基于Matlab和Scope Photo软件分析得出喷嘴孔径为0.4、0.5和0.8 mm时雾化角、雾化粒径大小及分布。绘制出雾化特性与压力的关系曲线,并通过Matlab软件对曲线进行拟合得出雾化压力与流量、雾化角和粒径的关系式。结果表明:雾化流量、雾化角与雾化压力成正相关,雾化粒径与雾化压力成反相关;流量特性和雾化粒径受喷嘴孔径的影响较大,孔径越大雾化角受压力的影响减小;实验结果为研究水雾在粉尘治理中的应用提供指导作用。  相似文献   

2.
《动力工程学报》2017,(7):577-583
利用流量分布测试系统对大流量低背压螺旋喷嘴的流量分布特性进行实验研究.采用排状量筒法,测量不同高度不同孔径螺旋喷嘴的流量、每层喷雾面位置、雾化角以及径向体积流率,分析螺旋喷嘴的尺寸参数对其流量分布特性的影响规律.结果表明:相同压力下,螺旋喷嘴的高度H与孔径D的比值H/D越大,质量流量越小,雾化角越大,每层喷雾面径向体积流率越小;不同压力下,压力越高,质量流量越大,同一螺旋喷嘴的雾化角越大,每层雾化面的位置距喷嘴中心的距离越远.  相似文献   

3.
设计了一个1.2 kg/h的小流量气泡雾化喷嘴,利用粒子动态分析仪(PDA),对喷嘴下游流场进行测量,分析了液雾粒径和速度的分布规律及其相关因子,考察了气液质量流量比、进气压力、混合室长度对雾化特性的影响。结果表明,液雾粒径沿径向呈非轴对称分布,轴线下方平均粒径大于上方平均粒径,液滴粒径随轴向距离增加呈先减小后增大的趋势;液雾轴向平均速度呈钟形分布,喷嘴出口区域液滴轴向平均速度和均方根速度都比较大,两者值均随轴向距离增加而逐渐减小。喷嘴出口区域,液滴粒径与速度间负相关性很强,随轴向距离的增加,其相关性可以忽略。气液比增大液雾粒径减小;在相同的气液质量流量比(ALR)下,进气压力增大,雾化效果变差;混合室长度为其直径的2.5倍时,雾化效果较好。  相似文献   

4.
为研究真空状态下闪蒸对于旋流喷雾的雾化角、轴向速度和液滴粒径的影响,搭建真空闪蒸试验台,采用高速摄影、相位多普勒粒子分析仪(PDPA)等进行流场测试。结果表明:当控制旋流喷嘴两端压差为常见值时(0.5~0.7 MPa),通过降低喷嘴出口背压或升高液相温度引起闪蒸,雾化角显著增加,增幅超过20。;闪蒸使喷雾轴向速度由3.06 m/s增加至6.79 m/s;闪蒸工况下雾化角与出口背压和液相温度均呈二次方关系,而在一定范围内轴向速度与液相温度呈线性关系,闪蒸对液滴粒径影响不大。  相似文献   

5.
背压对空气物性影响较大,使喷嘴液膜受到的气动力发生大幅变化。采用计算流体力学(Computational Fluid Dynamics,CFD)方法对比3种常见液体工质和3种喷嘴尺寸,研究背压对雾化锥角、液膜厚度、旋流强度、液膜表面自激励不稳定性以及液膜形态的影响。结果表明:雾化锥角随背压增加而减小,其中部分喷嘴当背压达到某定值后,雾化锥角小幅波动;选用正庚烷或正十二烷为工质时,液膜厚度随背压增加而增加,达到一定背压后,3种液体液膜厚度呈小幅波动;旋流强度随背压变化无明显规律性;液膜自激励不稳定性随背压增加而降低;因水的表面张力较大,各雾化参数较为稳定;液膜形态与韦伯数呈明显规律性,背压越小韦伯数越大,液膜形态也更趋近于完美圆锥形;以正十二烷为工质时,其液膜形态在大背压下明显收缩,呈洋葱形,其余工质的液膜形态随背压增加,均逐渐从空心圆锥转变为郁金香形。  相似文献   

6.
依据索科洛夫等学者提出的经验公式对喷射器进行优化设计,搭建了用于测量喷射器性能的实验台,以CO_2为工质,分别研究当工作流体压力在8.0~9.6 MPa、引射流体压力在2.4~2.8 MPa以及工作流体温度在70~90℃时,喷嘴临界截面直径对喷射系数的变化规律。实验结果表明:当喷射器背压为3.9 MPa、工作流体温度为90℃、引射流体压力为2.4 MPa、工作流体压力在8.0~9.6 MPa时,喷射器的喷射系数随喷嘴临界截面直径的增大而减小;当喷射器背压为3.9 MPa、工作流体温度为90℃、工作流体压力为10.0 MPa、引射流体压力在2.4~2.8 MPa时,喷射器的喷射系数也随喷嘴临界截面直径的增大而减小;且喷射系数理论值与实验值吻合度较好,误差在±3.75%范围内。当喷射器工作流体压力为10.0 MPa、引射流体压力为2.7 MPa、喷射器背压为3.9 MPa、工作流体温度在70~90℃时,喷射系数随着喷嘴临界截面直径的增大而逐渐减小。另外,在保持喷射器的基本工作参数不变时,工作流体压力及引射流体压力的提高对喷射器喷射系数均有提升作用。  相似文献   

7.
邹小珂  吕田  顾根香  高深  张武高 《柴油机》2019,41(6):22-27, 33
在超高压燃油喷雾试验台上测试分析了不同环境背压及喷射流量对适用于斯特林发动机的小流量压力旋流喷嘴燃料喷射性能的影响。结果表明:喷嘴的喷雾形态受燃烧室背压的影响最明显,背压升高,喷雾锥角减小;喷射流量的影响受背压的限制,中高背压下,流量增大到一定程度后锥角开始变小,流量继续增大,雾化效果变差。喷嘴设计流量的影响为:增大设计流量,相同工况下的喷雾锥角有增大的趋势,但有效雾化的最小临界流量值变大;设计锥角的影响和设计流量类似:较大喷射流量工况下,大设计锥角喷嘴对高背压的适应性较好。研究认为:小流量工况只能采用小设计流量的喷嘴,且对高背压的适应性较差;在大流量工况下,设计流量和设计锥角均较大的喷嘴对高背压工况具有更好的适应性。  相似文献   

8.
依据索科洛夫等学者提出的经验公式对喷射器进行优化设计,搭建了用于测量喷射器性能的实验台,以CO2为工质,分别研究当工作流体压力在8.0~9.6MPa、引射流体压力在2.4~2.8MPa以及工作流体温度在70~90℃时,喷嘴临界截面直径对喷射系数的变化规律。实验结果表明:当喷射器背压为3.9MPa、工作流体温度为90℃、引射流体压力为2.4MPa、工作流体压力在8.0~9.6MPa时,喷射器的喷射系数随喷嘴临界截面直径的增大而减小;当喷射器背压为3.9MPa、工作流体温度为90℃、工作流体压力为10.0MPa、引射流体压力在2.4~2.8MPa时,喷射器的喷射系数也随喷嘴临界截面直径的增大而减小;且喷射系数理论值与实验值吻合度较好,误差在±3.75%范围内。当喷射器工作流体压力为10.0MPa、引射流体压力为2.7MPa、喷射器背压为3.9MPa、工作流体温度在70~90℃时,喷射系数随着喷嘴临界截面直径的增大而逐渐减小。另外,在保持喷射器的基本工作参数不变时,工作流体压力及引射流体压力的提高对喷射器喷射系数均有提升作用。  相似文献   

9.
采用高压共轨系统与高速摄影系统,实验测量液体燃料在跨临界条件下,喷雾贯穿距离与雾化角度的变化。实验结果表明启喷压力变大和背压变小会导致喷雾贯穿距离增大;雾化角度只与背压有关,背压越大,雾化角度越小。  相似文献   

10.
为解决常规重油枪雾化性能差、氮氧化物排放高等问题,采用气液逆向接触的气体辅助雾化喷嘴形式,通过正交试验法获得不同结构形式下喷嘴的流量特性及雾化特性,开发出逆喷式单喷嘴结构,在此基础上采用低NOx燃烧技术进行单喷嘴组合获得油枪,并进行整枪的冷态及燃烧试验,最终开发出逆喷型的油枪。试验结果表明:逆喷型喷嘴的雾化粒径优于传统喷嘴,雾化粒径可达到50μm;雾化粒径随气耗率的增大而降低,气耗率超过20%时,继续增大气耗率对雾化粒径影响不明显;拟合出了油枪的流量特性公式;低NOx组织的油枪比普通油枪的NOx排量低26.7%。  相似文献   

11.
在增压条件下对一种旋流式气液同轴喷油器的流量特性进行试验研究.在不同的环境背压条件下,分别研究了气液比、环境背压对燃油流量系数、雾化空气流量系数的影响.结果表明:本喷油器的燃油流量系数稳定在0.2971,不受气液比、环境背压等因素的影响;雾化空气流量系数随环境背压与喷油器雾化空气通道进口压力的压力比的增大而减小,与气液比无关.根据试验数据整理出雾化空气流量系数拟合公式,能够对试验数据作出准确的预测.  相似文献   

12.
大流量单混合孔Y型喷嘴的雾化特性   总被引:2,自引:0,他引:2  
对大流量单混合孔Y型喷嘴的雾化性能进行了实验研究,分析了其流量特性以及气耗率对雾化粒径的影响.结果表明,单混合孔Y型喷嘴设计流量能够达到1000kg/h以上,且具有较细的雾化粒径;在气压一定时,随着水压的增大其水流量增大,气耗率减小;气耗率对雾化粒径的影响较明显,但当粒径减小到一定程度后,继续增大气耗率对雾化粒径的影响不明显;单水孔与多水孔Y型喷嘴的雾化性能无明显差别;改进的Y型喷嘴液膜随机破碎模型可较好地用于大流量单混合孔Y型喷嘴雾化粒径的预报.  相似文献   

13.
喷淋脱硫塔喷嘴外流动数值模拟与实验研究   总被引:3,自引:0,他引:3       下载免费PDF全文
建立了一个喷淋脱硫塔喷嘴数值模型,研究了影响喷淋脱硫塔内气液传质的喷淋液流量与液膜平均破裂长度、喷嘴初始喷射角、液滴平均粒径的关系。设计了专门的测试平台和单匝螺旋喷嘴,采用快速CCD和数码照相机拍照对液膜和液滴运动进行了测试和分析。模型计算和实验结果均表明:液膜平均破裂长度随喷淋液流量加大而减小;液滴平均粒径减小随喷淋液流量加大而减小;在喷嘴出口缝隙高度等于4.25 mm时,随流量的增大,喷嘴的喷射角随流量的增大反而变小,大于4.25 mm后,在同一喷嘴缝隙高度下,喷射角随喷嘴流量的增加而增加。  相似文献   

14.
采用数理统计方法研究不同实验工况下雾化液滴的粒径分布规律,研究发现:在不同实验工况下,雾化液滴的粒径大小均呈现一定的分布形式,且随喷射流量的增大,粒径分布的中位径总体变化呈减小趋势;通过Pearson x2拟合优度检验,液滴粒径分布假设为Rosin-Rammler分布函数时,其显著性水平在所有实验工况内均达到0.01;基于RosinRammler分布密度函数计算出不同实验工况下4种粒径的质量分数,喷射流量为50 mL/min时液滴粒径集中在0.7 ~1.0mm之间.  相似文献   

15.
为了改进缸内直喷汽油机用电磁涡旋式喷嘴的喷雾特性,对喷嘴孔径、螺线管电阻和涡旋片等结构参数进行了优化设计,并在喷雾试验台上对燃油质量流量、喷雾发展过程、喷雾锥角、喷雾贯穿距、针阀延迟和喷雾粒径分布进行了试验验证。结果表明:优化设计后的喷嘴的质量流率大于原商用喷嘴的质量流率,而质量流率的线性度接近原商用喷嘴。在相同喷射时间5ms及喷油压力9.5MPa下,当喷嘴孔径由0.55mm增大为0.70mm时,喷雾发展过程较为快速,燃油流量增加约56%,喷雾锥角增加10°,但喷雾不稳定性也随之提高,雾化粒径增大。不同喷油压力下的喷雾锥角变化较大,靠近喷嘴的喷雾轮廓与孔口设计有关。喷油压力增大时,其质量流率会随之增大,雾化粒径分布在10μm~20μm范围内的喷雾液滴体积分数也会随之上升,从而提高雾化程度。  相似文献   

16.
压力式喷嘴雾化性能的试验研究   总被引:1,自引:0,他引:1       下载免费PDF全文
利用单相喷嘴雾化测试系统对压力式喷嘴的雾化特性进行试验研究。采用高速动态摄像仪与扇形排状量筒结合计算机图像处理技术对液滴粒径分布、径向喷淋密度分布和雾化角等进行了测量和数据处理,得到喷嘴的雾化压力与雾化液滴粒径、径向喷淋密度分布及雾化角之间的关系。对于HHSJ-90210异型雾化喷嘴,当压力范围为0.05~0.5MPa时,雾化液滴的SMD平均粒径范围为0.831~1.621mm,条件雾化角为70.4°~91.2°;对于内螺纹喷嘴,当压力范围为0.07~0.52MPa时,雾化液滴的SMD平均粒径范围为2.23~3.52mm,条件雾化角范围在64.5°~78.5°。研究结果可为湿法烟气脱硫技术中此类型压力式喷嘴的选型提供科学依据。  相似文献   

17.
双通道气流式喷嘴加压雾化的实验研究   总被引:4,自引:0,他引:4  
研究了双通道气流式喷嘴加压雾化过程.使用M alvern激光测粒仪测量了不同环境压力下索特平均粒径的分布.实验结果表明:当气液质量比不变时,索特平均粒径与环境压力的n次幂成正比,n的范围大约在0.3~0.9之间,并且n随气液质量比的增大而增大;当环境压力不变时,索特平均粒径随着气液质量比的增大而减小.  相似文献   

18.
王森林  岳守标  杨波  马中瑾 《节能》2002,(4):6-8,40
对新型气体辅助雾化喷嘴特性进行了初步实验研究。利用马尔文粒度分析仪测量喷嘴在不同工况下达到的雾化粒度。实验结果表明雾化压力和气液流量比对雾化粒度有明显影响 ,而喷嘴直径几乎对之无影响 ,液体流量测量结果说明喷嘴的流量系数很低。此项研究为燃油喷嘴的开发、设计和运行调节提供了一定的理论依据  相似文献   

19.
在自行搭建的比例放大透明喷嘴内部流动可视化试验台上,采用高速数码摄像和长工作距离显微成像技术,研究了不同背压条件下喷嘴喷孔内部单相流及空穴两相流的流动特性。研究结果表明:喷油压力一定时,背压逐渐升高会使喷孔内的空穴分布区域逐渐减小,直至消失,流动也由空穴两相流转变为单相流;较高的背压会增加空穴初生的难度,空穴初生对喷孔前后压差要求也更高,同时喷孔出口的燃油平均速度也更高;相同压差下,较高的背压对单相流阶段造成的流动损失较大,对空穴两相流阶段造成的损失则较小。  相似文献   

20.
试验研究了单相喷嘴、双通道外混式喷嘴、双通道内混式喷嘴、三通道外混式喷嘴的雾化特性随液体压力、气液比、轴向距离和径向距离的变化规律。研究结果表明单相喷嘴液滴平均直径随液体压力的增大而减小,随轴向距离和径向距离的增大而增大;双通道外混式喷嘴和双通道内混式喷嘴液滴平均直径随气液比的增大而减小,随轴向距离的增大而增大;三通道外混式喷嘴液滴平均直径随气液比的增大而减小,随轴向距离的增大呈现先减小后增大的变化趋势。根据试验结果,可用于污泥喷雾干化的雾化喷嘴的优先顺序依次为双通道外混式喷嘴、单相喷嘴、双通道内混式喷嘴、三通道外混式喷嘴。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号