首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为分析R410A、R404A、R407C在T型翅内螺纹水平强化管外降膜蒸发的换热特性,分别在变喷淋密度(0. 047~0. 113 kg/(m·s))、变蒸发温度(0~16℃)以及变热流密度(10~40 k W/m~2)条件下进行了实验,采用"Wilson"图解法以及热阻分离法进行实验数据处理,得到了3种制冷工质在管外降膜蒸发时的换热特性。结果表明:随着喷淋密度的增加,R410A、R404A和R407C 3种制冷工质的管外降膜蒸发传热系数先增加后减少,存在最佳喷淋密度,分别为0. 092、0. 088和0. 095 kg/(m·s);随着蒸发温度的升高,R410A和R404A的管外降膜蒸发传热系数先减小后增大,而R407C的管外降膜蒸发传热系数则一直在增大,但均小于R410A和R404A;随着热流密度的增加,3种制冷工质的管外降膜蒸发传热系数也随之增大,其中,R410A的换热性能最好,R404A次之,R407C最差。通过传热分析以及实验数据拟合,得到了3种制冷剂的降膜蒸发传热关联式。  相似文献   

2.
针对新型强化换热管的几何特征,采用三维数值模拟方法,分别从速度—压力场协同性、综合评价因子ε、速度—温度场协同角三个方面对扭曲管、波节管、波纹管开展研究。对波纹管的实验测量结果与数值模拟结果最大相对偏差为2.35%。数值模拟结果表明,纹管管外Re从569~7 399变化,总压降从3.78增长到317.30Pa;扭曲管Re从508~7 622变化,总压降从0.84增大到62.50Pa;波节管Re为580~7 550变化,总压降从1.29增长到110.00Pa,波纹管阻力相比波节管最大提高186.7%,相比于扭曲管提高408.4%,Re<4 500时扭曲管Nu数比波纹管最大提高13.30%,比波节管最大提高6.97%,Re>4 500时波节管换热性能逐渐超越扭曲管以及波纹管,在计算范围内Nu比扭曲管最大提高5.17%,比波纹管最大提高5.40%;波节管的周期性波峰对于强化换热和减阻作用显著;波纹管的压降、强化换热表现均弱于波节管和扭曲管。根据计算结果拟合出Nu数与Re、Pr的实验关联式,为管壳式换热器设计提供一定的理论和依据。  相似文献   

3.
搭建了一个单管管外流动蒸发换热实验台,研究工质R410A在两种双侧强化管外流动蒸发换热特性.实验段分别为一根长2 000 mm,外径为25.4 mm的光滑管和两根相同尺寸的双侧强化管.实验工况:蒸发饱和温度为5~10℃,水的进口温度为8~18℃,水流量为0.6~1.6 m3/h.在处理数据过程中采用G-W图解法获得管内...  相似文献   

4.
以电加热作为供热热源来模拟太阳能,研究了不同工况下倾斜降膜蒸发特性,通过对蒸馏器吸热面和冷凝面划分等间距小区段,根据液膜和冷凝面的温度分布,利用Dunkle模型预测了蒸馏器的产水速率.结果表明:热流密度、单位长度给水质量流量、倾斜角度和单位长度冷却水质量流量是影响蒸馏器产水速率的主要因素;产水速率随着热流密度的增大呈线性增加;在单位长度给水质量流量为5.5~10.0kg/(h.m)时,产水速率随着单位长度给水质量流量的减小呈线性增大,单位长度给水质量流量为0.7~5.5kg/(h.m)时,产水速率波动较小;在倾斜角度为15°~60°时,产水速率随着倾斜角度的增大而增大;冷却水均匀地流过冷凝面上表面有助于增大蒸馏器的产水速率;蒸馏器吸热面和冷凝面划分的区段越多,模型预测值与实验值吻合越好.  相似文献   

5.
通过建立垂直管内降膜蒸发物理数学模型,对环形插头型布膜器管内R113的气液两相逆流降膜蒸发换热特性进行二维非稳态数值研究,分析了管内液膜流动分布以及壁面温度和液膜表面温度分布,对比了加热前后液膜厚度的变化.结果表明:随着降膜蒸发过程的进行,液膜下端开始出现液滴飞溅,且不断向上端发展;R113在管内降膜蒸发过程中壁面温度和液膜表面温度沿流动方向逐渐升高,气相温度变化趋势则相反;从壁面到管中心,温度沿径向逐步降低,在近壁面1mm前后其分布趋势相反;加热后液膜厚度明显减小,且下游液膜厚度变得相对均匀.  相似文献   

6.
陈学  刘晓华  沈胜强 《太阳能学报》2015,36(8):1996-2001
以水为工质,对直径为19 mm的铝黄铜管外降膜蒸发传热过程进行实验研究。实验通过测量管表面和饱和蒸气温度,计算得到平均和局部传热系数。由实验数据分析喷淋密度、蒸发温度、热流密度、管间距等参数对管外平均传热系数的影响,并与直径25.4 mm铝黄铜管降膜蒸发传热系数进行比较,讨论局部传热系数随周向角度的变化。结果表明,在实验范围内,管外平均传热系数随温度的升高而增大,随喷淋密度的增大先增大,后略微下降。小管径管的降膜蒸发传热系数大于大管径管的传热系数。  相似文献   

7.
水平管降膜蒸发器广泛应用于海水淡化和石油化工行业。该文建立二维数值模型,使用CFD软件结合UDF程序对水平管降膜蒸发的传热传质过程进行数值模拟,并且将换热系数作为指标与实验进行对比验证。结果显示:在一定范围内,换热系数随着雷诺数或者饱和温度的增大而增大,而最大壁面剪切力出现在105°~120°之间;Re=2000较Re=1000对应的平均换热系数增大约9.8%,壁面剪切力最大值增大约6.3%。363.15 K饱和水较323.15K饱和水对应的平均换热系数增大约8.3%,壁面剪切力最大值减小约25.7%。  相似文献   

8.
通过对CO2的物理特性及水平光管与不同螺纹管管外沸腾换热进行实验研究,得出了换热系数随蒸发压力和热流密度的变化关系。拟合得出CO2在蒸发压力的范围为2.6~3.6MPa、热流密度为10~50 kW.m-2的换热关联式h=A.qn。与Cooper预测值的偏差在±15%之内,与Ribatski关联式预测值的偏差在±7%之内,与Ye实验关联式预测值的偏差在±9%之内。在CO2在光管管外沸腾换热的基础上进一步研究其在螺纹管管外沸腾对换热的强化效果,为CO2强化换热进一步发展提供依据,具有一定工程实践意义。  相似文献   

9.
波纹换热管管内强化传热实验研究   总被引:5,自引:0,他引:5  
管内以水为介质,管外以饱和蒸汽为热媒,通过实验研究了φ5/φ19波纹管的传热特性。测试了 RP=1800~24000的换热系数,并通过拟合获得了该种规格波纹管的传热准则关系,并表明波纹管具有 良好的强化传热性能,传热系数比光滑直管大2.5~3倍;波纹管加工尺寸误差对传热性能的影响不明 显。  相似文献   

10.
为研究环保制冷剂R245fa在水平强化管外凝结换热特性及表面结构对管内外换热性能的影响,分别对三维齿结构低肋管(A管)和斜翅管(B管)进行管外凝结换热实验。在数据处理方法上,采用Wilson-Gnielinski图解法获得管内水侧对流换热系数及其计算关联式,再利用热阻分离法获得管外凝结换热系数。实验结果分析得出A管和B管的管内换热系数强化倍率分别为2.04和2.98,管外强化倍率分别为1.77~1.94,1.87~2.14,B管管内外换热性能都优于A管,造成两种强化管内外换热性能差异的主要因素是强化管内的螺纹高度和管外翅化比。  相似文献   

11.
定壁温水平传热管外降膜对流显热换热特性理论研究   总被引:2,自引:0,他引:2  
刘振华  朱群志 《热能动力工程》2000,15(5):464-466,476
采用层流模型对定壁温边界条件时水平管外垂降液膜的强制对流显热换热性能进行了数值计算。计算中对管顶部的冲击滞止区和管侧部的自由绕流区分别采用不同的坐标变换方法进行微分方程组筒化。根据滞止区计算结果确定自由烧流区的初始边界条件。计算结果证明管径对平均换热系数的影响不容忽视。定壁温条件时的平均换热系数比定热通量时约高12%到20%左右。  相似文献   

12.
《节能》2017,(6):19-24
为了深入探究水平管降膜蒸发的微观传热特性,采用基于VOF法的计算流体模型对水平管外降膜蒸发进行数值模拟,通过求解控制方程得到液膜内的温度场和速度场。分析了不同入口边界温度和Re数下管外薄液膜内热边界层、无量纲温度和局部传热系数的微观传热特性变化规律,定量给出了热发展区与充分热发展区的边界位置。模拟结果表明:液膜入口温度越高,液膜热发展区覆盖的圆周角度越小;液膜内的热发展区覆盖的角度随Re数的增大而增加是平均传热系数随Re数增大的原因;管外圆周方向无量纲温度分布证明了液膜中的传热包含导热和对流传热;管外液膜内纯导热系数与局部传热系数的差值随倾斜角的增加而减少是由于对流效应沿管圆周方向减弱引起的。  相似文献   

13.
功能表面降膜蒸发传热特性的实验研究   总被引:5,自引:0,他引:5  
研究了处理表面镀铬铝管、PTFE铜管和纯铝氧化管水平管降膜蒸发传热,研究了喷淋密度、热流密度、管内蒸汽速度和管表面处理对降膜蒸发传热特性的影响。实验结果表明:在表面蒸发区,水平管降膜蒸发传热系数随热流密度的增加而提高,随喷淋密度增大先降低后升高,冷凝例传热系数基本保持不变。总传热系数对操作条件变化很不明显,表面阳极氧化膜使传热系数略有下降,但由于其优良的抗垢时蚀性能,非常有必要再进行深入地研究。  相似文献   

14.
齐春华  孙鹏浩  冯厚军 《太阳能学报》2016,37(12):3246-3252
通过利用水平管降膜蒸发换热试验台分别对Φ19×0.75 mm的波纹管和光滑管进行实验研究。实验在变喷淋密度(0.007~0.130 kg/m·s)、变热通量(52~143 k W/m~2)、变传热温差(1.5~10.0℃)、变蒸发压力(0.020~0.065MPa)条件下进行。通过实验数据得到波纹管和光滑管传热系数与各影响因素(喷淋密度、热通量、传热温差、蒸发温度)之间的变化规律。实验结果表明:在一定范围内,降膜蒸发器的传热系数K随喷淋密度γ、热通量Q的增大、蒸发温度T的升高而增大,随传热温差Δt的增大而降低。当喷淋密度大于0.178 kg/(m·s)时,总传热系数趋于稳定,当热通量大于130 k W/m~2时,总传热系数的增速明显变缓。此外,不凝气含量对传热系数K的影响显著,在同等实验条件下波纹管的传热系数比光滑管提高近30%。  相似文献   

15.
本研究基于VOF算法编写用户UDF(自定义函数),采用FLUENT软件建立了椭圆横管外降膜流动和换热的计算模型。根据CFD(计算流体力学)模型计算和分析了在不同长短轴比下管外降膜速度分布、压力分布、液膜内温度分布和管外换热分布的变化规律。研究结果表明:长短轴比的变化影响了管外液膜速度分布、压力分布和膜内温度分布;相比圆管,椭圆管的管外膜内液体流速更快。壁面压力沿周向逐渐减少并在X=0.9附近快速回升;随长短轴比e的增加,周向压力最小值位置逐渐向后推移。局部Nu数分布与压力分布在趋势上存在一致性。当e=1.65附近时,椭圆的换热性能最优;最后,通过对管形的研究分析,提出横管的传热分区模型。  相似文献   

16.
对制冷剂R134a在水平强化换热管管内的凝结换热性能进行了实验研究。实验管为两种内微翅管,分别命名为A管和B管。实验件采用套管结构,强化内管外表面和外管内表面之间(管间)走乙二醇水溶液。实验过程中管内冷凝温度为51℃,管间乙二醇水溶液的流速为3.35 m/s,乙二醇水溶液的进口温度根据制冷剂的质量流速做相应调整,以保证试件出口制冷剂有一定的过冷度。实验结果表明:两种水平强化管的管内冷凝换热系数均随着制冷剂质量流速的增加而增大,在制冷剂质量流速从300 kg/(m2.s)增加到700kg/(m2.s)时,A管的管内冷凝换热系数比B管高1.87%到6.28%,而B管的制冷剂流动阻力比A管高9.56%到11.05%,A管的结构优于B管。  相似文献   

17.
为深入研究液膜内的微观传热机理,对水平管外降膜蒸发的传热特性进行了数值模拟,获得了液膜厚度、液膜流动速度和传热系数等热力参数在液膜内的分布特性。通过与实验数据的对比验证了数学模型的准确性。研究结果表明:在饱和蒸发温度62℃、传热温差2.8℃、管外径25.4mm和液膜入口速度0.071~0.15 m/s条件下,沿圆周方向,液膜厚度减小,传热系数增加,直至达到液膜热力发展区,膜厚和传热系数趋于稳定;受液膜内温度变化的影响,液膜内的粘度、表面张力和导热系数的变化对液膜传热特性产生显著影响。  相似文献   

18.
紧凑高效型水平管束降膜蒸发换热器的实验研究   总被引:1,自引:0,他引:1       下载免费PDF全文
在大气压条件下使用单列和3列叉排光滑管和滚压强化换热管紧凑管束进行了水降膜蒸发换热实验,确认了滚压管在中,低热负荷范围内能够增强换热系数3~4倍,有很好的沸腾强化换热性能。管间距及液膜溅射损失对蒸发换热特性影响很小。同时也考察了单列和3列管束换热特性闯的差异。实验发现这种差异在低雷诺数区域时更加明显。  相似文献   

19.
为开发适用于低温热源的高效降膜蒸发换热装置,本研究采用FLUENT软件对低沸点有机工质氟利昂(R113)在竖直管内汽液两相逆流降膜蒸发进行模拟研究。汽液界面捕捉选用VOF模型,并通过udf编程模拟汽液两相蒸发传热,研究了喷淋密度、热流密度及入口温度对R113降膜蒸发换热的影响。结果表明:在一定结构参数下,存在降膜换热最佳喷淋密度;在一定喷淋密度下,热流密度对降膜换热影响显著,且热流密度越高换热效果越好;随着入口温度升高,降膜换热效果削弱,且高于某温度后其对降膜换热几乎没有影响。  相似文献   

20.
为研究制冷剂在内螺纹管内的换热情况,搭建集蒸发冷凝性能测试于一体的实验台,研究了替代工质R32在水平内螺纹管内的流动沸腾换热特性和压降特性。实验测试管外径分别为7和8 mm,进口过冷度和出口过热度为3~5℃,制冷剂质流密度为300~700 kg/(m~2·s),饱和温度保持在5~10℃,实验段水侧雷诺数为12 000~20 000,热平衡误差保持在5%以内。结果表明:制冷剂侧表面换热系数随制冷剂质流密度的增大而增大,随饱和温度的增大而减小,而水侧雷诺数Re对其并无影响;总传热系数随制冷剂质流密度、水侧雷诺数Re的增大而增大,随饱和温度的增大而减小;试验段压降随制冷剂质流密度的增大而增大,随饱和温度的增大而减小,水侧雷诺数对其无影响;在相同工况下,7 mm管比8 mm管的制冷剂侧换热系数以及总传热系数都大,但是其压降也比8 mm管大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号