共查询到19条相似文献,搜索用时 88 毫秒
1.
利用修正的牛顿-谐波平衡法建立了非线性奇异振子的解析逼近周期和周期解.通过改写控制方程和选取简单、合适的校正项对牛顿-谐波平衡法进行了修正.构造的两个解析逼近周期和周期解不仅在振幅和参数全部取值范围内有效且能快速地收敛到精确解;两个逼近周期与精确周期的百分比误差分别低于0.92%和0.09%,后者比已有结果精度高。 相似文献
2.
达芬-谐波振子的改进解析逼近解 总被引:4,自引:2,他引:4
研究达芬-谐波振子的解析逼近解。所谓达芬-谐波振子是指当位移远小于1时,系统可化为三次非线性振子,而当位移远大于1时,该系统则化为线性谐波振子。通过将变形后的控制方程的线性化与谐波平衡法组合起来,我们建立了达芬-谐波振子频率及周期解的改进解板逼近。改进的解析逼近在振幅的全部取值范围内,包括振幅趋于零及无穷的情况,都有令人非常满意的精度。 相似文献
3.
4.
带三次恢复力项频率依赖于速度(Velocity-Dependent-Frequency, VDF)的非线性振子 的周期及其性质目前没有文献讨论,且使用传统的摄动法或谐波平衡法求解这类振子一阶近似解时往往失效。特别的,其频率在有限的幅值范围内奇异。首先求得了该振子周期的积分表达式,基于积分表达式可积性条件采用谐波平衡法得到了该振子一类初始条件下的精确解;研究了该振子的周期性质,给出了由第一类完全椭圆积分表示的周期-振幅的近似解析表达式,分析了振子的方波现象及产生原因。研究表明,振子周期最终随着幅值的增大衰减到0;振子方波现象产生原因是由于系统参数 ,随着幅值的增大,方波现象更明显。最后提出使用一种Hermite插值法求解该振子的周期解,该方法将时间变量转换为新的谐振时间变量,其频率为振子频率的一半,对应的控制微分方程转变为适合于Hermite插值分析的形式,其解与数值解的对比证明了该方法的有效性。 相似文献
5.
针对低阶谐波平衡法精度不高的不足,引入椭圆函数谐波平衡法解决非线性气动弹性问题。基于一阶活塞理论,建立了高速二元机翼的立方非线性颤振方程,采用椭圆函数谐波平衡法、谐波平衡法和Runge-Kutta数值计算方法进行了求解。结果表明:椭圆函数谐波平衡法的计算结果与Runge-Kutta数值计算方法的结果吻合,且与谐波平衡法相比其相对误差更小,可以有效的预测极限环振荡的幅值及其临界点。同时研究了弹性轴位置及重心位置对极限环颤振临界点的影响,随着弹性轴位置不断靠近翼弦中点,极限环振荡临界速度不断增大;而随着重心位置与弹性轴距离的增大,极限环振荡临界速度存在一个极小值点。 相似文献
6.
汽车转向系的振动会导致车辆行驶不稳定,从而引发车祸.因此在考虑间隙与干摩擦非线性因素的基础上,建立了独立悬架汽车转向系振动的四自由度非线性动力学模型,对间隙分段函数采用了多项式曲线拟合;应用增量谐波平衡法和插值技术求解了多自由度强迫型非线性振动系统解的基波与超谐波成分,对其极限环幅值进行了预测,并与四阶RK法所计算的结果进行对比分析,证明了该方法的快速性与准确性;在此基础上分别分析了系统的幅频与相频特性,间隙与干摩擦因素对系统振动特性的影响;研究结果对如何消除转向系振动与其振动的非线性控制具有理论指导意义. 相似文献
7.
8.
研究双稳态压电发电系统非线性振动特性。通过谐波平衡法计算获得系统幅频响应方程,分析不同非线性系数、阻抗参数与激励对系统幅值解影响,随激励频率、幅值的变化,双稳态压电发电系统幅值解存在跳跃、多解现象,调节非线性系数及阻抗参数可使不稳定区域范围最小;研究外加激励对功率影响,随非线性系数及阻抗参数的增加,输出功率先增加后减小,通过调节磁化强度与负载阻抗可使系统输出功率最大;通过实验所得频率电压响应曲线及电阻功率响应曲线,验证系统非线性分析结果。可为双稳态压电发电系统工程应用提供理论依据。 相似文献
9.
建立了包含时变啮合刚度、齿侧间隙与综合啮合误差的Ravigneaux式复合行星齿轮传动系统纯扭转动力学模型。运用增量谐波平衡法对系统运动微分方程组进行求解,得到系统的基频稳态响应。研究了时变啮合刚度、外部激励、齿侧间隙等参数的变化对系统动力学特性的影响。研究结果表明,间隙的存在使得复合行星齿轮系统的频响曲线出现了幅值跳跃与多值解等典型非线性特征,系统参数的共同作用使得复合行星齿轮系统出现了丰富的非线性动力学行为。利用本文的方法可以获得系统任意精度的近似解,为控制系统的振动与噪声,实现复合行星齿轮传动系统动态设计奠定基础。 相似文献
10.
11.
Summary This paper presents an analysis of new dynamical phenomena using the example of the simple nonsymmetrical anharmonic oscillator. Strange attractors are detected near the critical values of parameters obtained earlier using an approximate analytical method. Long transitional chaotic phenomena, sudden qualitative changes in chaotic dynamics with evolution of chaotic attractors are discussed and illustrated.With 4 Figures 相似文献
12.
Abstract We consider quantum dynamics of a parametrically driven anharmonic oscillator (PDAO) at a few-photon level. In this scheme the oscillatory mode is excited through the degenerate down-conversion process. This scheme could be experimentally realized in superconducting solid-state devices based on the nonlinearity of the Josephson junction or in cooled nano-mechanical oscillators. We investigate PDAO in the strong quantum regime that means strong Kerr-nonlinearity of the mode with respect to the mode’s dissipation for two cases of excitations: by a monochromatic driving field or by a train of Gaussian pulses. We demonstrate production of the nonclassical oscillatory states with two-fold symmetry in phase-space which are approximately close to the lower pure Fock states. Production of the superposition of the Fock states for time-intervals exceeding the characteristic time of decoherence and dissipation is also shown. 相似文献
13.
The correlation dimension of a chaotic attractor of a nonautonomous nonlinear oscillator with variable control parameters is evaluated from experimental data. The dimension of a critical attractor shows good agreement with theoretical data. As the amplitude of the external action is varied, the chaotic attractor exhibits evolution such that the correlation dimension increases from a minimum value, determined by the properties of the critical attractor, to the nearest integer. 相似文献
14.
The dynamics of a nonlinear oscillator under quasi-periodic drive action is studied using the model of an excitable electric
circuit with a nonlinear diode. In the space (plane) of control parameters, the system dynamics is described by the torus
doubling lines and the lines of transition to a strange nonchaotic attractor, which connect the so-called torus doubling terminal
points. The transition to chaos in this system proceeds either via the formation of a strange nonchaotic attractor or via
a torus-to-chaos intermittency regime. 相似文献
15.
A two-cell chemical oscillator, based on cubic autocatalysis, is considered, with the reaction in each identical cell being P → A; A + 2B → 3B; B → C. The coupling between the cells is assumed to take place by a linear exchange of either reactant A or autocatalyst B. In the former case, five possible stationary states are found with there being a range of parameter values over which non-symmetric stable stationary states can exist. In the latter case, the only possible stationary state is the same as for the uncoupled system. In both cases, Hopf bifurcations are found, leading to sequences of complex dynamical behaviour 相似文献
16.
The onset of stochastic oscillations in a nonlinear oscillator with a noise-modulated frequency is considered. It is demonstrated
that these oscillations are characterized by the existence of an attractor (i.e., are independent of the initial conditions),
but do not exhibit the phenomenon of synchronization typical of self-oscillatory systems. 相似文献
17.
This paper is focused on solving the generalized second-order strongly nonlinear differential equation ${\ddot{x}+\sum_i {c_i^2 }x \left| x \right|^{i-1}=0}$ which describes the motion of a conservative oscillator with restoring force of series type with integer and noninteger displacement functions. The approximate analytical solution procedures are modified versions of the simple solution approach, the energy balance method, and the frequency?Camplitude formulation including the Petrov?CGalerkin approach. For the case where the linear term is dominant in comparison with the other series terms of the restoring force, the perturbation method based on the solution of the linear differential equation is applied. If the dominant term is nonlinear and the additional terms in the restoring force are small, the perturbation method based on the approximate solution of the pure nonlinear differential equation is introduced. Using the aforementioned methods, the frequency?Camplitude relations in the first approximation are obtained. The suggested solution methods are compared and their advantages and disadvantages discussed. A numerical example is considered, where the restoring force of the oscillator contains a linear and also a noninteger order term (i?=?5/3). The analytically obtained results are compared with numerical results as well as with some approximate analytical results for special cases from the literature. 相似文献
18.
本文结合Zhang—Shimizu法与Newmark法,解决了二次非线性的Riemann—Liouville分数导数中奇异性问题,从而得到了非线性分数微积分求解的单步数值积分算法。在此基础上对某型非线性分数阶微分振子的动力学行为进行研究,分别讨论了振子自由振动及强迫振动下参数变化对振子非线性特性的影响。数值计算结果表明,该数值方法具有较好的稳定好,收敛速度快,精度较高,编程简单容易等优点。 相似文献
19.
Dr. J. Awrejcewicz 《Acta Mechanica》1989,77(1-2):111-120
Summary The paper presents an analysis of the transition from regular to chaotic motion in a Van der Pol-Duffing's oscillator with delay after a Hopf bifurcation. The conditions for the occurrence of the Hopf bifurcation have been determined by means of the approximate method. For the parameters near the bifurcation point a computer simulation of the vibrating system had been performed and the evolution of the system from regular motion to chaos has been analysed at the decrease of the value of the dimensionless damping coefficient.With 2 Figures 相似文献