首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 290 毫秒
1.
于宝种 《煤炭技术》2021,40(2):78-81
为研究近水平保护层开采后被保护层的变形规律,采用数值分析方法模拟了保护层开采过程中上覆煤层的应力、位移变化情况,获得了保护层开采后上覆煤层的裂隙发育高度,及保护层开采范围内煤层的卸压膨胀变形量为8.16‰。利用煤层顶底板变形测定仪井下实测了保护层开采过程中被保护煤层的形变量,保护范围内被保护煤层工作面的走向方向、倾斜下方及倾斜上方变形量均大于3‰,保护层卸压充分,保护效果显著。  相似文献   

2.
基于保护层开采条件下煤层变形破坏特征,采用RFPA2D-flow数值模拟软件,对被保护煤层的应力分布特征、煤层透气性变化规律和煤层变形量进行了数值模拟分析;同时对潘三矿近水平煤层进行下保护层开采试验研究,考察了保护层开采保护边界范围的卸压增透效果.结果表明,保护层开采后,过渡卸压区内煤体膨胀率为1.85%,煤层透气性系数可增大到原来的70倍.结合瓦斯抽采可以使保护层在走向方向和倾斜方向的有效保护卸压角从原来的锐角扩展到90°,使被保护煤层的卸压范围得到扩大.  相似文献   

3.
急倾斜多煤层上保护层保护范围的数值模拟   总被引:8,自引:1,他引:7       下载免费PDF全文
针对急倾斜煤层上保护层俯伪斜开采的保护范围划定问题,采用三维快速拉格朗日法,通过模拟上保护层俯伪斜开采后被保护层的应力场及变形场的动态发展过程,确定了随着上保护层工作面的推进,被保护层的垂直层理面应力和煤层变形规律;根据上保护层开采后的应力卸压保护准则和煤层变形保护准则,确定了上保护层沿走向和倾向的保护范围.研究表明,急倾斜煤层俯伪斜上保护层开采后,上保护层俯伪斜采煤法沿倾向上、下边界的卸压角分别为81.5和74°;沿走向的卸压角在倾向上呈非均匀分布,大小为30~52°,伪倾斜工作面中部的走向卸压角最大,为52°.数值模拟结果与现场考察结果比较接近.  相似文献   

4.
基于岩石破裂损伤理论和有限元计算方法,模拟保护层开采过程,下伏煤岩应力及变形特征,得出了下伏煤岩应力随保护层开采变化规律及被保护层煤层变形呈现压缩、膨胀、膨胀减小到稳定的变化规律,并在现场进行了工业性试验,考察了保护层开采过程,被保护层变形及煤层透气性变化,理论分析与现场测定基本吻合,依据研究结论,优化了被保护层卸压瓦斯抽采设计,通过被保护煤层卸压瓦斯抽采,残余瓦斯含量降到了2.33 m3/t,残余瓦斯压力降为0.35 MPa,均低于煤层突出临界值;被保护范围内煤层瓦斯抽采率达到44.8%;被保护层的瓦斯含量得到有效降低,消除了突出危险性,确保了被保护层的安全开采。  相似文献   

5.
上保护层开采下煤岩强扰动力学行为与渗透特性   总被引:2,自引:0,他引:2       下载免费PDF全文
保护层开采在低渗透高瓦斯近距离煤层中得到广泛应用,研究保护层开采扰动下的煤岩强扰动力学行为与渗透特性为进一步更加高效安全的开采被保护层煤层提供了理论支持。选取平煤集团十二矿上保护层己14煤层工作面己14-31010和被保护层己15煤层工作面己15-31030为研究对象,进行相似模拟试验和保护层开采过后被保护煤层受力分析。通过相似材料模拟试验获取保护层开采方式下被保护层的受力情况,上保护层开采过程中,煤层压力先增大后减小,采空区重新压实稳定后,应力状态近似恢复到原岩应力状态。通过对保护层开采后的被保护煤层受力分析获取煤层变形后的应力状态,上保护层开采过后,被保护层煤层产生变形,煤层上部分膨胀变形,应力小于原岩应力;下部分煤层压缩,应力大于原岩应力。结合二者的结果获取保护层开采方式下室内试验中被保护层煤层应力加载路径。依据被保护层煤层应力加载路径,设计进行采动耦合应力路径下的煤样渗流试验。试验结果表明:上保护层煤层开采过程中,同等试验条件下,被保护层煤层可承受的上保护层开采扰动应力越大,被保护层煤层开采过程中的煤体破坏应力峰值越大,体积应变越大;被保护层煤层开采过程中,M组煤样和N组煤样应力应变曲线与常规保护层卸荷三轴试验相比,扩容点出现位置明显提前;同等应力状态下,水压越大,煤样的体积应变越大;被保护层煤层开采过程中,M组煤样初始围压为35 MPa,围压对渗透率的影响大于轴压的影响,N组煤样初始围压为20 MPa,围压、轴压交替对渗透率产生主要影响,渗透率曲线呈现"W"型。两组试验中,扰动应力最大的试样破坏前的渗透率普遍大于其他试样的渗透率。  相似文献   

6.
针对煤层下保护层开采保护范围划定及影响性问题,利用有限元分析软件ANSYS生死单元模拟保护层开采,探究随着保护煤层工作面的推进,被保护煤层垂直于煤层层理面的应力和变形规律;根据保护层开采应力卸压保护准则和煤层变形保护准则,确定被保护层沿倾向和走向的保护范围,同时对保护层保护效果的影响性因素进行分析。通过对某煤矿保护层开采保护范围的分析结果发现,被保护煤层倾向上部卸压角为60.32°,倾向下部卸压角为43.86°。走向卸压角在倾向各个位置呈现非均匀分布,最大卸压位置为走向中部附近,最大卸压角为54.46°。分析保护层保护效果的影响性因素可知,当煤层倾角较小时,采动应力判别准则较应变准则所得的卸压保护角偏于保守,较为安全。  相似文献   

7.
远程下保护层开采煤岩卸压效应研究   总被引:2,自引:0,他引:2  
基于保护层开采覆岩移动破坏特征,分析了远程下保护层开采煤岩卸压的可行性,采用FLAC2D数值模拟软件对被保护煤层的应力分布特征、煤厚变形规律、水平位移规律、卸压范围及卸压角进行了研究。结果表明:下保护层开采时,断裂带高度已发育到被保护层,煤层产生膨胀变形,生成大量的次生裂隙,使被保护煤层产生不同程度的卸压,同时水平位移的产生也有利于煤层透气性增加。在走向方向上,被保护层向保护层采空区方向内错约30 m,煤层进入稳定膨胀变形区,走向有效卸压角的大小为66°左右。研究结果应用于工程实践后,淮南某矿13-1煤层瓦斯压力由原来的4.4 MPa变为卸压后的0.7 MPa,煤层透气性系数增大了1 061倍,表明该方法是较好的区域性防突措施。  相似文献   

8.
以芦岭煤矿远距离下保护层(即Ⅲ11软岩工作面)开采作为工程背景,采用FLAC3D数值模拟技术,通过对虚拟监测点数据的统计分析,研究了下保护层开采过程中被保护8~#煤层的应力变化规律、膨胀变形程度及瓦斯压力变化规律。模拟结果显示:随保护层开采范围的不断增大,8~#煤层垂直应力、最大主应力及最小主应力变化量均超过10%;厚度变形量超过3‰;且在保护层开采中后期8~#煤层瓦斯压力低于国家防突规定的临界值0.74 MPa,表明下保护层开采对被保护的8~#煤层起到卸压保护作用。  相似文献   

9.
 摘 要:开采保护层是预防煤与瓦斯突出最有效、最经济的区域性防突措施。针对向阳煤矿远距离下保护层开采问题,理论分析了远距离下保护层开采的可行性及科学性;运用计算机数值模拟的方法,模拟远距离下保护层开采过程中被保护层的应力分布规律和膨胀变形程度,分析层间距与岩层岩性对开采保护层保护效果的影响,得出远距离下保护层开采对被保护层的保护效果。计算分析认为:开采保护层一1煤层对被保护层二1煤层起到了一定的保护效果,结合保护层开采和瓦斯预抽采可以实现有效消突。  相似文献   

10.
远距离下保护层开采中,影响被保护层保护效果的因素甚多,文中运用计算机数值模拟的方法,分析关键层在覆岩中的位置、工作面长度、煤层倾角、开采煤层的厚度对远距离下保护层开采时被保护煤层的保护效果,通过分析这四种因素,对远距离下保护层开采被保护层的应力分布、垂直位移、煤层膨胀变形的规律进行研究.结果表明,关键层所处的位置越靠近保护煤层、工作面的长度越长,煤层倾角越小、开采煤层的厚度越厚,被保护煤层的保护效果越好.  相似文献   

11.
薄煤层作为保护层开采的卸压机理   总被引:4,自引:3,他引:1  
秦子晗  潘俊锋  任勇 《煤矿开采》2010,15(2):85-86,106
参考七台河新兴煤矿地质条件,运用理论分析和数值模拟方法,对薄煤层作为保护层开采时,其围岩应力变化和被保护层的应力分布特征、卸压范围等进行分析。研究结果表明,随着上保护层开采范围的增大,采空区下的煤岩应力急剧下降,被保护层达到安全开采的区域范围也不断增加,卸压效果相当显著。  相似文献   

12.
针对平煤股份十矿大埋深弱透气性煤层下保护层开采工程,采用岩石破裂损伤理论和有限元计算方法,研究了被保护层变形规律、应力演化过程、卸压保护范围及瓦斯抽采效果。结果表明,随着保护层工作面的推进,其上覆煤岩体同时发生拉伸应力和剪应力破坏,被保护层大量的裂隙扩展发育,孔隙率大幅提高;随着保护层的开采,被保护层呈现出压缩和膨胀的变化规律,位于保护层采空区中部上方的被保护层变形最大,变形膨胀率最大,因此有利于煤层的卸压增透和瓦斯的抽放;岩石保护层开采后对被保护煤层沿倾斜方向预计保护范围卸压角为78°。工业试验显示:在己15-16-24130岩石下保护层开采后,上覆己15-16煤层变形膨胀率在0.62%~1.54%,己17煤层变形膨胀率在1.71%~3.67%;在预计保护范围线位置测定的煤层最大综合残余瓦斯压力为0.42 MPa,最大残余瓦斯含量为4.210 7 m3/t。证明预计保护范围是可靠的,为平煤十矿下保护层开采区域瓦斯治理技术的推广应用提供了可靠的依据。  相似文献   

13.
极薄保护层钻采上覆煤层透气性变化及分布规律   总被引:1,自引:0,他引:1       下载免费PDF全文
为了分析极薄保护层钻采的卸压保护效果,采用相似模拟和现场试验相结合的研究方法,系统地研究了被保护层卸压前后煤层透气性变化及分布规律。相似模拟试验研究表明,极薄保护层钻采后,被保护层产生卸压膨胀变形,煤层透气性增大,实测煤层透气性系数由3.80m2/(MPa2•d)增大到7.11m2/(MPa2•d)。待上覆煤岩体移动稳定后,由于煤岩体应力逐渐恢复,煤层透气性系数降至5.61m2/(MPa2•d),在保护层始采线前方和停采线后方的一定范围内上覆被保护层透气性比采空区中部大。随着被保护煤层逐渐被压实,煤层透气性有所降低,为了达到最佳的瓦斯抽采效果,必须在保护层钻采的同时进行卸压瓦斯抽采。现场实测极薄保护层钻采后被保护层透气性系数由0.047m2/MPa2•d增加到18.928m2/MPa2•d,提高了403倍。  相似文献   

14.
采用数值分析的方法,建立了保护煤层开采厚度、被保护煤层赋存厚度及层间岩性对上保护层开采保护效果影响的计算模型。结果表明,当上保护煤层开采厚度增加但小于下部被保护煤层赋存厚度,或者上保护煤层开采厚度不变而被保护煤层赋存厚度增加时,保护效果逐渐增加;但当上保护煤层开采厚度大于被保护煤层赋存厚度时,保护效果基本一致。同时,当上保护煤层与下部被保护煤层间的岩层岩性越硬时,被保护煤层煤体单元的塑性变形量和应力减小量越小,保护效果越差。在实体煤岩内,岩性差异大的区域内水平应力降也较大。采空区下方不均衡分布的垂直应力的垂向挤压与水平应力的横向剪切作用,是底板煤岩体单元发生偏心失稳进而产生塑性变形和破坏的重要原因。  相似文献   

15.
张建甫 《煤矿安全》2011,42(1):30-34
通过相似材料试验及现场工程测试等手段,对极薄近距离下保护层钻采上覆被保护层垂直应力、膨胀变形、渗透率演化规律进行了研究,得出了钻采极薄下保护层上覆被保护层的垂直应力、膨胀变形及渗透率变化规律等。研究结果表明,钻采极薄近距离下保护层二1煤垂直应力降低60%以上,相对膨胀变形率12‰,相似材料体渗透率增大15倍。钻采一9煤对上覆二1煤能形成保护效果,引起了二1煤卸压增透、卸压增流效应,降低了二1瓦斯抽采难度,消除了二1煤的突出危险性,研究成果可推广应用于极薄保层开采。  相似文献   

16.
为研究深井高应力、倾斜岩层条件下,保护层开采对下部巷道稳定性的影响,根据平煤十二矿地质情况,基于相似材料试验对保护层己14煤层开采过程中,下部己15煤层回采工作面的矿压规律进行了模拟研究。结果表明:在保护层开采前后,处于保护层采场外侧的回风巷始终受到高水平应力作用,在开挖60 cm后因采场初次来压影响,巷道下帮水平方向压应力由3郾 42 kPa增至50kPa,两帮变形较大;而处于保护层采场正下方的运输巷在保护层开采过程中顶板变形破坏较为严重,但保护层开采后,顶板垂直应力由最大值42 kPa降至拉应力-17 kPa,卸压效果非常明显,巷道稳定性好。  相似文献   

17.
张佳佳 《陕西煤炭》2021,40(2):25-28,51
以晋城矿区为工程背景,开采9号煤层作为3号煤层保护层,开展下保护层开采试验.采用数值模拟手段,研究下保护层开采上覆煤岩体卸压效果及被保护层煤体膨胀变形规律,并确定有效保护范围.研究结果表明:保护层工作面开采后,上覆煤岩体出现分区卸压效应,距离工作面垂直距离越远,岩层卸压程度越不明显.被保护层倾向卸压角为63°,走向卸压...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号