首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Programmed cell death during Drosophila embryogenesis   总被引:3,自引:0,他引:3  
The deliberate and orderly removal of cells by programmed cell death is a common phenomenon during the development of metazoan animals. We have examined the distribution and ultrastructural appearance of cell deaths that occur during embryogenesis in Drosophila melanogaster. A large number of cells die during embryonic development in Drosophila. These cells display ultrastructural features that resemble apoptosis observed in vertebrate systems, including nuclear condensation, fragmentation and engulfment by macrophages. Programmed cell deaths can be rapidly and reliably visualized in living wild-type and mutant Drosophila embryos using the vital dyes acridine orange or nile blue. Acridine orange appears to selectively stain apoptotic forms of death in these preparations, since cells undergoing necrotic deaths were not significantly labelled. Likewise, toluidine blue staining of fixed tissues resulted in highly specific labelling of apoptotic cells, indicating that apoptosis leads to specific biochemical changes responsible for the selective affinity to these dyes. Cell death begins at stage 11 (approximately 7 hours) of embryogenesis and thereafter becomes widespread, affecting many different tissues and regions of the embryo. Although the distribution of dying cells changes drastically over time, the overall pattern of cell death is highly reproducible for any given developmental stage. Detailed analysis of cell death in the central nervous system of stage 16 embryos (13-16 hours) revealed asymmetries in the exact number and position of dying cells on either side of the midline, suggesting that the decision to die may not be strictly predetermined at this stage. This work provides the basis for further molecular genetic studies on the control and execution of programmed cell death in Drosophila.  相似文献   

2.
Determination of anterior and posterior terminal structures of Drosophila embryos requires activation of two genes encoding putative protein kinases, torso and D-raf. In this study, we demonstrate that Torso has intrinsic tyrosine kinase activity and show that it is transiently tyrosine phosphorylated (activated) at syncytial blastoderm stages. Torso proteins causing a gain-of-function phenotype are constitutively tyrosine phosphorylated, while Torso proteins causing a loss-of-function phenotype lack tyrosine kinase activity. The D-raf gene product, which is required for Torso function, is identified as a 90-kDa protein with intrinsic serine/threonine kinase activity. D-Raf is expressed throughout embryogenesis; however, the phosphorylation state of the protein changes during development. In wild-type embryos, D-Raf is hyperphosphorylated at 1 to 2 h after egg laying, and thereafter only the most highly phosphorylated form is detected. Embryos lacking Torso activity, however, show significant reductions in D-Raf protein expression rather than major alterations in the protein's phosphorylation state. This report provides the first biochemical analysis of the terminal signal transduction pathway in Drosophila embryos.  相似文献   

3.
We have examined the role of innervation in directing embryonic myogenesis, using a mutant (prospero), which delays the pioneering of peripheral motor nerves of the Drosophila embryo. In the absence of motor nerves, myoblasts fuse normally to form syncytial myotubes, myotubes form normal attachments to the epidermis, and a larval musculature comparable to the wild-type pattern is generated and maintained. Likewise, the twist-expressing myoblasts that prefigure the adult musculature segregate normally in the absence of motor nerves, migrate to their final embryonic positions and continue to express twist until the end of embryonic development. In the absence of motor nerves, myotubes uncouple at the correct developmental stage to form single cells. Subsequently, uninnervated myotubes develop the mature electrical and contractile properties of larval muscles with a time course indistinguishable from normally innervated myotubes. We conclude that innervation plays no role in the patterning, morphogenesis, maintenance or physiological development of the somatic muscles in the Drosophila embryo.  相似文献   

4.
5.
6.
During Drosophila embryogenesis, mesodermal cells are recruited to form a complex pattern of larval muscles. The formation of the pattern is initiated by the segregation of a special class of founder myoblasts. Single founders fuse with neighbouring nonfounder myoblasts to form the precursors of individual muscles. Founders and the muscles that they give rise to have specific patterns of gene expression and it has been suggested that it is the expression of these founder cell genes that determines individual muscle attributes such as size, shape, insertion sites and innervation. We find that the segmentation gene Krüppel is expressed in a subset of founders and muscles, regulates specific patterns of gene expression in these cells and is required for the acquisition of proper muscle identity. We show that gain and loss of Krüppel expression in sibling founder cells is sufficient to switch these cells, and the muscles that they give rise to, between alternative cell fates.  相似文献   

7.
8.
9.
The chordotonal (Ch) organ, an internal stretch receptor located in the subepidermal layer, is one of the major sensory organs in the peripheral nervous system of Drosophila melanogaster. Although the cell lineage of the Ch organ has been well characterized in many studies, the determination machinery of Ch organ precursor cells (COPs) remains largely unresolved. Here we report that the rhomboid (rho) gene and the activity of the Drosophila EGF receptor (DER) signaling pathway are necessary to induce specifically three of the eight COPs in an embryonic abdominal hemisegment. The cell-lineage analysis of COPs using the yeast flpase (flp/FRT) method indicated that each of the eight COPs originated from an individual undifferentiated ectodermal cell. The eight COPs in each abdominal hemisegment seemed to be determined by a two-phase induction: first, five COPs are determined by the action of the proneural gene atonal and neurogenic genes. Subsequently, these five COPs start to express the rho gene, and rho activates the DER-signaling pathway in neighboring cells and induces argos expression. Three of these argos-expressing cells differentiate into the three remaining COPs and they prevent neighboring cells from becoming extra COPs.  相似文献   

10.
Several lines of investigation have now converged to indicate that the neurotransmitter release apparatus is formed by assembly of cytosolic proteins with proteins of the synaptic vesicle and presynaptic terminal membranes. We are undertaking a genetic approach in Drosophila melanogaster to investigate the functions of two types of cytosolic proteins thought to function in this complex: N-ethylmaleimide-sensitive fusion protein (NSF) and the soluble NSF attachment proteins (SNAPs). We have identified Drosophila homologs of the vertebrate and yeast NSF and SNAP genes. Both Drosophila genes encode polypeptides that closely resemble their vertebrate counterparts and are expressed in the nervous system; neither appears to be in a family of closely related Drosophila genes. These results indicate that the Drosophila NSF and SNAP genes are excellent candidates for mutational analysis of neurotransmitter release.  相似文献   

11.
1. The mechanisms underlying long-term depression (LTD) of gamma-aminobutyric acid-A (GABAA) receptor-mediated synaptic transmission induced by 10-Hz stimulation of the inhibitory afferents were investigated using perforated and whole cell voltage-clamp recordings from neurons of the deep cerebellar nuclei (DCN). 2. LTD of inhibitory postsynaptic currents (IPSCs) was reliably induced when the 10-Hz stimulation was delivered under current-clamp conditions where the postsynaptic neuronal membrane was allowed to depolarize. 3. Currents elicited by local applications of the GABAA receptor agonist, 4,5,6,7-tetrahydroisoxazolo [5,4-c]pyridin-3-ol hydrochloride (THIP) were also depressed during LTD. 4. LTD could be induced heterosynaptically and did not require the activation of GABAA receptors during the 10-Hz stimulation. 5. In cells loaded with QX-314 and superfused with media containing 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) and 2-amino-5-phosphonovaleric acid (APV), a series of depolarizing pulses (50 mV, 200 ms) induced a sustained depression of the IPSC. However, this was not observed in cells recorded with high bis-(o-aminophenoxy)-N,N,N',N'-tetraacetic acid (BAPTA)-containing pipette solutions or when they were exposed to the L-type Ca2+ channel antagonist, nitrendipine. 6. The 10-Hz-induced LTD was also inhibited by BAPTA and was significantly reduced when DCN cells were loaded with microcystin LR or treated with okadaic acid, both inhibitors of protein phosphatases. 7. These results indicate that increases in postsynaptic [Ca2+] and phosphatase activity can reduce the efficacy of GABAA receptor-mediated synaptic transmission.  相似文献   

12.
Neurosteroids are steroids that are synthesized de novo in the brain from cholesterol and, in general, mediate their effects through ion-gated channel receptors such as gamma-aminobutyric acidA (GABA[A]) and N-methyl-D-aspartate receptors rather than through classical nuclear steroid hormone receptors. Steroid hormones are known to exist not only as free compounds, but also as sulfated derivatives. Pharmacological studies indicate that unconjugated and sulfated steroids, such as pregnenolone and pregnenolone sulfate, may have opposite effects on GABA(A) receptors. Thus, pregnenolone acts as a potent positive allosteric modulator of gamma-aminobutyric acid action at GABA(A )receptors, whereas pregnenolone sulfate acts as a potent negative modulator. Recent experiments also suggest that dehydroepiandrosterone and dehydroepiandrosterone sulfate may have distinct effects on growth of neurites from embryonic neocortical neurons in vitro. Thus, regulation of steroid sulfation may have profound behavioral and morphological effects on the nervous system. We, therefore, studied the developmental expression of the enzyme steroid sulfatase (STS), which converts sulfated steroids to free steroids. By in situ hybridization, STS messenger RNA was expressed in the embryonic mouse cortex, hindbrain, and thalamus during the last third of gestation. The sites of expression of STS were similar to those of P450c17, suggesting that these two enzymes may have concerted actions in similar functional processes.  相似文献   

13.
At the start of insect embryogenesis most of the protein mass of the egg cytoplasm exists as vitellin (Vt) obtained endocytically during vitellogenesis. Of the new embryo polypeptides (EP) appearing in the egg during embryogenesis, many are synthesized de novo, while, in some species, others derive from developmentally programmed partial proteolysis of Vt. Earlier we showed that by the end of vitellogenesis the two native Vts in Acheta domesticus exist in opposing gradients along the longitudinal axis of the egg. Here we hypothesize that this ooplasmic Vt distribution presents a milieu for Vt processing out of which region-specific regulatory molecules could arise. The metabolic origin and stage-specific patterns of seven predominant EPs (EP 1-7) identified by SDS-PAGE were examined and the results correlated with developmental morphology during the 14 days of embryogenesis. Based on antibody reactivity, peptide mapping and in vitro radiolabeling, we determined that EPs 1-3, 6 and 7 are Vt-derived, while EPs 4 and 5 are produced de novo by the embryo. The five Vt-derived EPs appear during the first 24 h of embryogenesis when migrating cleavage nuclei and associated cytoplasm form the cellular blastoderm, and levels of EPs 4 and 5 increase during days 4-6 of embryogenesis when katatrepsis and yolk mass contraction occur. Positive periodic acid-Schiff staining indicated that EPs 1-3 and their Vt-precursor polypeptides are glycoproteins. This work shows that developmental stage-specific Vt processing occurs during A. domesticus embryogenesis and points next to investigation of the functional significance of Vt cleavage products during development.  相似文献   

14.
15.
Participants (N = 206) experienced 15-min of monotonous drumming either before or after hypnosis (Harvard scale). Participants completed the Phenomenology of Consciousness Inventory (PCI) in reference to the last 4-min of drumming. Stimulus order did not affect the objective trance levels as measured by the Harvard scores. The subjective trance level as measured by hypnoidal scores (predicted Harvard scores from the PCI) was significantly higher when drumming preceded hypnosis. Participants' estimated average trance level achieved during drumming fell in the medium range of susceptibility (5-8) (Pekala, 1995). Participants who achieved higher hypnoidal and Harvard scores were more likely to report relaxed feelings and shamanic-type experiences in narratives about their subjective experiences during drumming.  相似文献   

16.
The position of the nucleus along the anterior rim of stage 8 Drosophila oocytes presages the dorsal side of the egg and the developing embryo. In this paper, we address the question of whether the oocyte has a previously determined dorsal side to which the nucleus is drawn, or whether nuclear position randomly determines the dorsal side. To do so, we have taken advantage of a genetic system in which Drosophila oocytes occasionally become binuclear. We find that (i) the two nuclei migrate independently to their respective positions on the anterior rim, sometimes selecting the same site, sometimes not, (ii) the two nuclei are equivalent in their ability to induce a dorsal-ventral pattern in the overlying follicular epithelium, and (iii) at any position around the anterior circumference of the egg chamber the follicle cell sheet is equally responsive to the Gurken signal associated with the oocyte nuclei. These results argue that the dorsal-ventral axis is determined arbitrarily by the randomly selected position of the nucleus on the anterior rim of the oocyte. Some of the binuclear eggs support embryonic development. However, despite the duplication of dorsal chorion structures, the majority of such embryos show normal dorsal-ventral patterning. Thus, processes exist in the ventral follicular epithelium or in the perivitelline space that compensate for the expansion of dorsal follicle cell fates and consequently allow the formation of a normal embryonic axis.  相似文献   

17.
18.
Secreted and transmembrane proteins play an essential role in intercellular communication during the development of multicellular organisms. Because only a small number of these genes have been characterized, we developed a screen for genes encoding extracellular proteins that are differentially expressed during Drosophila embryogenesis. Our approach utilizes a new method for screening large numbers of cDNAs by whole-embryo in situ hybridization. The cDNA library for the screen was prepared from rough endoplasmic reticulum-bound mRNA and is therefore enriched in clones encoding membrane and secreted proteins. To increase the prevalence of rare cDNAs in the library, the library was normalized using a method based on cDNA hybridization to genomic DNA-coated beads. In total, 2,518 individual cDNAs from the normalized library were screened by in situ hybridization, and 917 of these cDNAs represent genes differentially expressed during embryonic development. Sequence analysis of 1,001 cDNAs indicated that 811 represent genes not previously described in Drosophila. Expression pattern photographs and partial DNA sequences have been assembled in a database publicly available at the Berkeley Drosophila Genome Project website (). The identification of a large number of genes encoding proteins involved in cell-cell contact and signaling will advance our knowledge of the mechanisms by which multicellular organisms and their specialized organs develop.  相似文献   

19.
The nudel gene is maternally required to define dorsoventral polarity of the Drosophila embryo. It encodes an unusual mosaic protein with a protease domain that may trigger the protease cascade required for ventral development. We describe phenotypic and molecular analyses of nudel mutations that provide further insight into nudel protein function. Surprisingly, nudel mutations primarily cause either dorsalized embryos in which dorsal cell fates are expanded over ventral and lateral cell fates or fragile eggs that fail to develop beyond early embryonic stages. The nudel protein is therefore required not only for embryonic dorsoventral polarity but also for structural integrity of the egg. Complementation and antagonistic interactions between nudel alleles suggest that the nudel protein is functionally modular and that protein-protein interactions are important for nudel protein function. Three nudel mutations that produce dorsalized embryos map to the protease domain of nudel, suggesting that this domain is specifically required for defining embryonic dorsoventral polarity. Finally, certain combinations of nudel alleles simultaneously produce completely dorsalized and normal embryos yet very few embryos of intermediate mutant phenotypes. The unusual biphasic distribution of phenotypes may indicate that nudel activity above a threshold is required to generate embryonic dorsoventral polarity.  相似文献   

20.
Heterodimeric cell surface receptor integrin is widely expressed in the nervous system, but its specific role during axon development has not been directly tested in vivo. We show that the Drosophila nervous system expresses low levels of positron-specific (PS) integrin subunits alphaPS1, alphaPS2, and betaPS during embryonic axogenesis. Furthermore, certain subsets of neurons express higher levels of integrin mRNAs than do the rest. Null mutations in either the alphaPS1 or alphaPS2 subunit gene cause widespread axon pathfinding errors that can be rescued by supplying the wild-type integrin subunit to the mutant nervous system. In contrast, misexpressing either the alphaPS1 or alphaPS2 integrin subunit in all neurons leads to no obvious axon pathfinding errors. We propose that integrin does not itself serve as either a "clutch" constituting molecule or a specific growth cone "receptor," as proposed previously, but rather as part of a molecular network that cooperatively guarantees accurate axon guidance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号