首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 593 毫秒
1.
基于恒流源充电软开关型高压直流电源的研究   总被引:1,自引:0,他引:1  
在开关频率小于1/2谐振频率的情况下,串联谐振变换器具有对小电容负载进行"等台阶"恒流线性充电和软开关特性。推导并分析了串联谐振变换器在一个工作周期内的6种工作模式及每种模式下的谐振电感电流和谐振电容电压公式。利用全桥串联谐振变换器对倍压整流器进行类似"均充"恒流充电,结合脉幅调制(Pulse Amplitude Modulation,简称PAM)和脉频调制(Pulse Frequence Modulation,简称PFM)控制方式,研制了一台软开关型高压直流电源。电源的设计过程和测试结果分析表明,该电源满足了软开关和恒流源充电的要求。最后提出一种采用多模块串联叠加技术来提高功率的改进方案。  相似文献   

2.
一种谐振型推挽式直流变换器   总被引:1,自引:0,他引:1  
通过在变压器副边串联LC谐振器件,在谐振频率高于2倍开关频率时,电路能实现功率MOSFET的零电压开通和零电流关断,以及副边续流二极管的零电流关断。描述了电路软开关实现的具体过程。针对副边LC谐振过程中特有的n周期谐振现象,探索了其形成机理,推导了n周期谐振下输出电压、负载电阻及谐振电容电压之间的解析公式关系,归纳得到了变换器输出电压与输出电阻、输出电流之间的特性曲线,进而阐述了电路的应用范围及设计特点。最后制作了一台实验室样机,样机最多可工作在4周期谐振模式下,对不同负载、不同周期谐振工作状态的电路波形进行测试,验证了电路工作原理。  相似文献   

3.
基于串联潴振电路结构,固定导通时间、变频控制以及零电流切换的技术^[1],为激光器高压储能电容设计了20kV/50mA的恒流充电电源。对随着充电电压增高,谐振频率漂移引起的开关非零切换问题,设计了零电流同步开天探测控制电路。充电电压和充电电流的大小由微处理器控制。前者正比丁充电电流脉冲的总个数,后者则止比于开关工作频率。  相似文献   

4.
电感电流临界连续工作模式(BCM)Buck变换器,在电感电流下降到零时,输出滤波电感和开关管并联电容谐振即准谐振(Quasi Resonant)(QR)。在开关管两端电压谐振到零的时候开通开关管,则可以实现零电压零电流开通(ZVS/ZCS)。本文通过详细分析输出电感与开关管并联电容的谐振过程,得出开关管两端电压为零的时间,并且通过设计延时电路,以保证输入电压变化时依然能够实现零电压和零电流开通(ZVS/ZCS)。在开关管关断时由于开关管两端并联了谐振电容,可近似认为是零电压关断。而且Buck变换器工作于BCM模式时输出滤波电感体积小,动态响应速度变快,二极管自然关断,没有反向恢复损耗。最后设计了一台3kW的原理样机,最高效率可以达到98.7%。  相似文献   

5.
首先,提出了一种LLC谐振的软开关直流变换器,其中原边包含4个开关管、2个变压器绕组和1个耦合电容,并利用耦合电容构造了2个变压器绕组同时工作的回路,实现了两者的均流;副边包含2个二极管和2个谐振电容,构成了一个谐振式倍压电路;然后,利用变压器漏感、励磁电感和谐振电容产生LLC谐振来传递能量,各开关管能实现零电流开通,二极管零电流关断,且承受的反向电压为输出电压,关断损耗也很小;最后,分析了电路各阶段的工作原理,推导了电压增益特性,并设计了一款22~28 V输入、360 V输出、额定负载800 W的样机。实验测试结果证明,电路最高效率达到93.5%,同时也证明了电路的有效性。  相似文献   

6.
提出一种高效率高增益的谐振型直流功率变换器。该电路利用耦合电感、开关电容电路及输出串联结构实现高电压增益。耦合电感中的漏感能量由输出端回收,利于提升效率,降低开关管的电压应力。同时借助漏感和开关电容谐振,次级二极管的零电流开关得以实现,从而减小反向恢复的影响。详细分析了高效率高增益谐振型直流功率变换器的工作原理,及连续导通模式下变换器的稳态性能,并借助一台35 V输入、200 V/0.75 A输出的实验样机验证了理论分析的正确性。  相似文献   

7.
针对传统三电平开关电容变换器存在硬开关或软开关实现较苛刻的不足,提出一种恒流充电谐振放电的新型1/2降压式开关电容变换器,谐振电容的谐振电流脉冲数减半,增大了电流占空比,降低了谐振电容的阻性损耗。以电路谐振和能量变换的规律,分析了输出电压、充电脉冲平均电流和变换效率等数学表达式,并得出一种简单的减少潜电路产生的新方法。这种谐振型开关电容变换器在一定范围内可通过调频方式调压,是一种谐振电感量小且效率高的直流变换器。最后通过仿真和实验验证了电路及其分析过程的正确性。  相似文献   

8.
为提高逆变器的效率,提出了一种新型并联谐振直流软开关逆变器的拓扑结构,在辅助谐振电路中设置了1对反并联的晶闸管来控制谐振电流,使逆变器的直流环节电压周期性下降到零,逆变器的主开关可以在零电压条件下完成切换,同时辅助开关器件在逆变器换流过程中也实现了零电压开关或零电流开关。该逆变器在换流过程中不需要设定和负载有关的电感电流阈值,有利于降低辅助电路损耗和简化控制。对电路在1个开关周期内的各个工作模式进行了理论分析,给出了设计规则,并建立起辅助谐振电路损耗和分压电容的电压偏差量的数学模型。制作了一台5k W的实验样机,实验结果表明逆变器的工作过程符合原理分析,所以该软开关逆变器可以有效地提高效率。  相似文献   

9.
《广东电力》2021,34(3)
常规基于开关电容的电压均衡电路结构工作在硬开关状态,能量损失大,而且它们的均衡时间随着储能单元数量的增加而增加,为此提出一种基于星型开关电容结构的零电流电压均衡拓扑结构。该拓扑在星型开关电容结构的基础上加入了谐振电感,不仅提供任意单元到任意单元的均衡路径,而且在谐振频率处实现零电流开关;另外,该拓扑还可通过加入1个准谐振槽实现简易的模块化设计;最后,设计了由超级电容组成的样机进行实验验证。由实验结果可知:在开通与关断时流经开关管的电流均为零,电路均衡效率达94%;三单元与四单元电路的均衡时间相同;模块化设计下的六单元电路也实现了电压均衡。理论分析结果与实验结果一致,验证了所提拓扑能够:实现零电流工作和简易的模块化设计,从而降低电路损耗和成本;实现均衡时间与储能单元数量的解耦,从而提高均衡速度。  相似文献   

10.
谐振开关电容变换器新型PWM控制策略   总被引:2,自引:0,他引:2  
谐振开关电容变换器(Resonant Switched Capacitor converter RSCC)具有零电流开关的优点,但其输出电压的调节能力差。为了控制谐振开关电容变换器的输出电压,该文提出一种新型的PWM控制方式,它通过调整开关电容的充电时间(放电时间固定不变)来控制输出电压,使输出电压在输入电压和/或负载变化的情况下基本保持恒定。而且大部分开关器件仍保留零电流开关特性,因此具有开关电流应力低、EMI小等优点。该文以一个降压式谐振开关电容变换器为研究对象,详细分析了其工作过程和稳态特性,并制作了一台12V/5V/2A的实验样机控制系统,验证了该PWM控制方法的正确性和可行性。  相似文献   

11.
A resonant power converter for the low switching loss power conversion must be achieved for high-frequency zero voltage switching or zero current switching. The important matters of the continuation of resonant phenomena are the control strategy of resonant initial current and the clamp circuit for suppressing the resonant link voltage. The control strategy of the resonant initial current is discussed and the powering and regenerative operation are shown successfully in the steady state and transient state by experimental test. Finally, a new resonant dc link dual converter system is proposed and it is confirmed that the voltage stress of the resonant capacitor and the rms value of electrolytic capacitor current are decreased with experimental test also.  相似文献   

12.
利用基波分析法的串联谐振电容充电电源建模   总被引:1,自引:1,他引:0  
张东辉  严萍 《高电压技术》2007,33(12):201-204
为进一步研究因具有电流源特性而已广泛应用于电容器充电电路中的串联谐振变换器,利用基波分析法分析了串联谐振变换器,建立了串联谐振变换器基波分析法的稳态模型并在适当修改后用于串联谐振电容充电电源的研究。用搭建的30 kW、1 kV电容充电电源样机验证的结果表明,实验与理论结果在特定条件下非常符合。利用该模型可更快地确定电路工作在给定条件下的谐振参数,使电源的整体效率和器件的应力都取得最优,使用稳态模型仿真可大大地节省仿真时间,从而使系统的设计更快捷,工作更稳定。  相似文献   

13.
为了使电脉冲除冰(electro-impulse de-icing,EIDI)系统中的高压储能电容器组高效、安全地充电,研究了一种基于DSP控制串联谐振型拓扑结构的脉冲电源.通过建立不同工作模态时的等效电路,理论分析并推导了电容器组的平均充电电流,同时通过合理设计脉冲电源的工作频率和谐振元件参数,使其工作在欠谐振状态,从而实现在较宽电压范围内的电容器的恒流充电和零电流软开关工作.因此当除冰用传感器检测到机翼表面有冰层时,即可使脉冲电源工作以达到除冰要求.  相似文献   

14.
35kV/0.7A高压变频恒流充电电源   总被引:4,自引:6,他引:4  
介绍了一种适用于电容器快速充电的高压变频恒流充电电源,它采用智能功率模块IPM和全桥串联谐振式变换电路,依靠电流反馈信号来控制开关频率的升高以保持充电电流的恒定。实际运行表明该电源恒流效果好,工作稳定可靠。  相似文献   

15.
基于移相控制的串联谐振变换器稳态分析   总被引:1,自引:1,他引:0  
将基波分析法应用到基于移相控制的串联谐振变换器,以电路稳态模型为基础计算出变换器的电压增益、电路阻抗、谐振电容电压和谐振电感电流、电压电流应力及功率,得到这些量与工作频率、占空比及等效负载品质因数之间的数学表达式,并通过仿真图形进行直观显示。最后通过搭建的电路进行了实验验证。  相似文献   

16.
高压电容器充电电源谐振变换器的定频控制   总被引:2,自引:0,他引:2  
邵建设  严萍 《高电压技术》2006,32(11):107-110
为有效控制高压电容器高频恒流充电电源谐振变换电路的开关频率,研制了定频控制(占空比为50%,开关频率在整个充电过程中保持不变)的20 kW高压电容器充电装置逆变电路开关电路。通过提出的充电电源电路的并联负载谐振(PLR)DC-DC变换电路的等效电路模型,研究了充电电源装置的恒流充电原理,找出了电容充电初始阶段谐振电流和开关频率的数值关系。实验研究结果表明,当谐振变换电路开关频率接近于等效电路固有谐振频率的奇数分之一时,产生较大的谐振电流;为了实现谐振变换电路开关器件的零电流开通和关断,开关频率的大小始终可控制在小于等效电路固有谐振频率的1/2的范围之内。  相似文献   

17.
串联谐振变换器的最优轨迹控制   总被引:1,自引:1,他引:0  
介绍了串联谐振变换器的最优轨迹控制法。首先分析了串联谐振变换器的4种工作模式,然后以谐振电感电流和谐振电容电压为状态变量,基于状态平面分析法推导了系统的最优轨迹控制法则。控制目的是使这两个状态变量跟踪他们期望的稳态轨迹,从而减少暂态振荡并在极短时间内达到稳态。实验结果表明,最优轨迹控制系统的暂态性能非常好。  相似文献   

18.
提出了一种新型的含并联辅助电路的零电流转换(ZCT)全桥DC/DC变换器拓扑结构。该变换器采用脉宽调制(PWM),通过在原边增加一个由电容和电感构成的并联有源辅助电路,在开关管状态发生变化时,控制辅助电路的谐振电流,实现了主开关管和辅助开关管的零电流开关(ZCS),也实现了输出整流二极管的软换流,使整流二极管承受的电压相对较低,即为输出电压,特别适合于开关器件为IGBT的高电压大功率场合,消除了IGBT拖尾电流引起的开关损耗,改善了电路性能。分析了变换器的工作原理及零电流开关的实现条件,给出了主电路拓扑结构和谐振网络相关参数设计。根据所选取的参数对主电路进行了仿真研究,结果验证了电路分析的正确性和可行性。  相似文献   

19.
A noncontact charging system using a resonant converter is presented in this paper, where the power transfer ability of a detachable transformer is improved by using a parallel capacitor connected to the secondary coil. A method to get the optimum value of the capacitance which would maximize the charging current is described. A method of application to the practical circuit such as a voltage resonant converter is also described  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号