首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chitosan has been exploited as a material for the development of edible films, and additionally can be used as a carrier of functional compounds such as α-tocopherol. The aim of this work was to evaluate the effects of the incorporation of α-tocopherol in chitosan-based films. FTIR and thermal analyses were performed and showed that the incorporation of α-tocopherol affects the chemical structure of chitosan-based films with the establishment of new chemical bonds and the decrease of crystallinity. Results also showed that the increase of α-tocopherol concentration promotes a decrease of water content (from 12.6 to 11.4%) of the films. The addition of α-tocopherol to chitosan films leads to a significant reduction (p < 0.05) of tensile strength from 34.06 to 16.24 MPa, and elongation-at-break from 53.84 to 23.12%. Film opacity values (ranging from 4.74 to 7.83%) increased when α-tocopherol was incorporated into the film. Antioxidant capacity of chitosan-based films was evaluated and was enhanced when α-tocopherol was present in the film matrix. Results showed that α-tocopherol can be successfully added to the chitosan films enhancing the final quality and shelf-life extension of food products.  相似文献   

2.
The challenge for food industry is developing gentle processes concept, which will prevent food spoilage and leave a food natural, minimally processed, fresh-like and safe. A new technique of food preservation could be usage of combined methods of green process, such as cold gas plasma with bioactive substances, and protective coatings. The aim of this study was to determine the antibacterial activity of chitosan films incorporated with lysozyme exposed to helium plasma treatment as well as evaluate their physical properties. The edible films have been prepared basing on low molecular weight chitosan by casting from lactic acid solution with water solution of lysozyme in three various concentrations (0, 0.5 and 1 %). Dried films were then modified by exposition on cold helium plasma treatment for 0, 5 and 10 min. Obtained films were tested against growth of Listeria monocytogenes, Yersinia enterocolitica and Pseudomonas fluorescens. In order to characterize chitosan-based films, their mechanical properties, theromogravimetric analysis (TGA), dynamic mechanical thermal analysis (DMTA), contact angle measurement, water vapour permeability (WVP) and scanning electron microscopy (SEM) were evaluated. The films with 1 % lysozyme incorporation enhanced the inhibition efficiency of chitosan-based films against gram-positive (L. monocytogenes) and gram-negative (P. fluorescens) bacteria, where reduction zones were 42.5 and 69.8 mm, respectively. Besides that, hydrolytic changes of chitosan chain caused by lysozyme activity were confirmed by TGA and DMTA. Contact angles and WVP of tested films were not significantly affected by helium plasma exposition, nor lysozyme dosage. Hydrophilic natures of chitosan-based films were confirmed by both tests. Microscopy image of cross-section structure was smooth and continuous due to lysozyme addition in film composition. Application of chitosan films incorporated with lysozyme and low-pressure plasma treatment could be used as innovative preservation method in a wide range of food products.  相似文献   

3.
Chitosan-based films for food packaging applications were prepared by casting and dried at room temperature or heat-treated in order to study functional properties and antimicrobial activity. In all cases, films were flexible and transparent, regardless of chitosan molecular weight, glycerol content, and temperature. Regarding antimicrobial activity, chitosan film forming solutions showed antimicrobial behaviour against Escherichia coli and Lactobacillus plantarum. It was also observed that the bacteriostatic property of chitosan-based films against bacteria employed in this study was notably affected by temperature. Moreover, temperature produced significant variation in the functional properties of chitosan-based films, such as colour, wettability, resistance against UV light and mechanical properties. In good agreement with this behaviour, total soluble matter (TSM), fourier transform infrared (FTIR) spectroscopy, thermo-gravimetric analysis (TGA) and X-ray diffraction (XRD) results suggested a change in the chemical structure of chitosan films, possibly due to Maillard reaction when heat treatment was used.  相似文献   

4.
Abstract: Effects of chitosan molecular weight (1815 and 366 kDa), type of acid (1% acetic, formic, and propionic acid, or 0.5% lactic acid) and plasticizer (0, 25% glycerol or sorbital w/w chitosan) on the mechanical, water barrier, and antibacterial properties of β‐chitosan films were investigated. Tensile strength (TS) of high molecular weight (Hw) films was 53% higher than that of low molecular weight (Lw) ones, acetate, and propionate films had the highest TS (43 and 40 MPa) among tested acids, and plasticizer‐reduced film TS 34%. Film elongation at break (EL) was higher in Hw films than in Lw ones, in which formate and acetate films were the highest (9% and 8%, respectively), and plasticizer increased the film EL 128%. Molecular weight of chitosan did not influence water vapor permeability (WVP) of the films. Acetate and propionate films had lower WVP than other acid types of films, and plasticizer increased film WVP about 35%. No difference was found between glycerol and sorbitol films in terms of film mechanical and water barrier properties. Lw β‐chitosan films showed significant antibacterial activity against E. coli and L. innocua. This study demonstrated that β‐chitosan films are compatible to α‐chitosan films in physicochemical properties and antibacterial activity, yet with simple sample preparation. Practical Application: β‐chitosan based edible films at molecular weight of about 300 kDa showed great antibacterial activity against Gram‐positive and Gram‐negative bacteria. The films have similar mechanical and water barrier properties to α‐chitosan based films at the similar molecular weight, but simple sample preparation procedures and more attractive color. The release of active chitosan fragment from the film matrix acts as an antibacterial agent, making β‐chitosan films suitable as intelligent food wraps or coatings for a wide range of food products to control moisture loss and prevent surface bacterial growth.  相似文献   

5.
Combining antimicrobial agents such as plant essential oils directly into a food packaging is a form of active packaging. In this work chitosan-based films containing cinnamon essential oil (CEO) at level of 0.4%, .0.8%, and 1.5% and 2% (v/v) were prepared to examine their antibacterial, physical and mechanical properties. Scanning electron microscopy was carried out to explain structure–property relationships. Incorporating CEO into chitosan-based films increased antimicrobial activity. CEO decreased moisture content, solubility in water, water vapour permeability and elongation at break of chitosan films. It is postulated that the unique properties of the CEO added films could suggest the cross-linking effect of CEO components within the chitosan matrix. Electron microscopy images confirmed the results obtained in this study.  相似文献   

6.
Rosemary essential oil (REO) was used to develop an active film from chitosan. The effects of REO concentration (0.5, 1.0 and 1.5% v/v) on film properties were studied by measuring the physical, mechanical and optical properties of the REO‐loaded films. Scanning electron microscopy and Fourier transform infrared (FTIR) spectroscopy were used to study microstructure and the interaction of the chitosan‐based films. The solubility and water gain of the chitosan film decreased about 25% and 85%, respectively, by REO incorporation, up to 1.5% v/v, because of the interaction between hydrophilic groups of chitosan and REO as confirmed by FTIR. It was determined that REO improved the transparency of the films from 4.97 in neat chitosan up to 7.61; moreover, it reduced the films’ light transmission in UV light more than 25%. Films containing REO showed more antibacterial activity and total phenol content. The films containing REO showed potential to be used as active film in food preservation.  相似文献   

7.
以壳聚糖和明胶为复合膜骨架材料,通过加入0.3%(体积比)甘油增塑剂,制备具有显著抗菌性能的可食用复合膜。以较高的抗拉强度、较大的断裂伸长率、较低的水蒸气透过系数为主要性能指标,对成膜骨架材料壳聚糖和明胶的配比进行优化。研究结果表明,当壳聚糖浓度为1.5%、明胶浓度为1.25%时,以6∶4的体积比混合,制备获得机械性能良好(抗拉强度为13.24 MPa,断裂伸长率为112.45%),水蒸气透过系数较低(0.4032 mg·mm·kPa-1·h-1·m-2)的最优化复合膜。通过红外光谱、X射线衍射、扫描电镜等手段对复合膜进行表征。结果表明,与壳聚糖膜和明胶膜相比,复合膜的内部分子之间有较强的氢键和分子间作用力,膜内部致密且水蒸气不易通过,同时复合膜液对大肠杆菌、金黄色葡萄球菌和枯草芽孢杆菌均具有显著的抑制效果。  相似文献   

8.
壳聚糖具有良好的生物相容性、可生物降解性、安全性、成膜性、抗菌性等,常用于果蔬保鲜。但由于机械性能和生物活性不足,为了增强其理化性能和生物活性,常添加生物聚合物、抗菌剂、抗氧化剂等功能成分以提高膜综合性能。综述了壳聚糖膜和壳聚糖/多糖、壳聚糖/蛋白质、壳聚糖/脂质、壳聚糖/抗菌剂、壳聚糖/抗氧化剂等壳聚糖基复合膜在果蔬保鲜中的应用进展,从壳聚糖的诱导活性、成膜特性和抗菌活性三个方面总结了壳聚糖膜的保鲜机理,分析了壳聚糖基复合膜目前在果蔬保鲜实际应用中存在的问题,并对未来发展方向进行了展望,以期为开发安全、高效、绿色、经济的壳聚糖基果蔬保鲜膜提供一定的理论指导。  相似文献   

9.
针对活性物质生物利用度提高这一热点问题,本文以三聚磷酸钠为交联剂,研究了交联壳聚糖薄膜的相关结构性能,探讨了交联壳聚糖水凝胶骨架片对活性物质的控释性能。壳聚糖来源广泛、生物相容性好,FT-IR-ATR分析显示,通过交联反应壳聚糖薄膜上引入一定基团,增强了薄膜的三维网络结构,从而使其具有一定的溶胀吸水性能。同时,交联后的壳聚糖薄膜耐酸性能明显提升,通过扫描电镜观察,交联壳聚糖薄膜经模拟胃液运转后表面仍然致密,无破损,具有作为活性物质载体材料的潜质。另外,以5-ASA为模型活性物质,通过压制得到交联壳聚糖水凝胶骨架片,在模拟释放实验中,5-ASA在胃液中0.5~1 h的释放率明显降低。研究结果显示,交联改性壳聚糖在活性物质传递及药物控释等领域都具有良好的应用前景。  相似文献   

10.
The relatively high incidence of Listeria monocytogenes in ready-to-eat (RTE) products such as cold-smoked salmon is of serious concern. The objective of this study was to evaluate the efficacy of chitosan-based edible coatings and films incorporating 3 generally recognized as safe (GRAS) antimicrobials, sodium lactate (SL), sodium diacetate (SD), and potassium sorbate (PS), against L. monocytogenes on cold-smoked salmon. Salmon samples were surface-inoculated with a 5-strain cocktail of Listeria monocytogenes to a final concentration of 4.4 log CFU/cm(2) and then either coated with chitosan solutions or wrapped with chitosan films with or without the 3 antimicrobials. The samples were then vacuum packaged and stored at 4 °C for 30 d. The chitosan coatings with or without the antimicrobials consistently showed higher efficacy against L. monocytogenes than chitosan films having the same compositions. The most effective film treatments, chitosan films containing 1.2% SL/0.25% SD or 2.4% SL, achieved ≥ 1.3 log reductions of L. monocytogenes during the 30 d of refrigerated storage, while the most effective coating treatments, chitosan coatings containing 1.2% SL/0.25% SD or 0.15% PS/0.125% SD, achieved ≥ 2.8 log reductions. Practical Application: This study shows that chitosan-based edible coatings and films hold promise and can potentially assist fishery industries in their efforts to control L. monocytogenes.  相似文献   

11.
Antimicrobial agents can be incorporated into edible films to provide microbiological stability, since films can be used as carriers of a variety of additives to extend product shelf life and reduce the risk of microbial growth on food surfaces. Addition of antimicrobial agents to edible films offers advantages such as the use of small antimicrobial concentrations and low diffusion rates. The aim of this study was to evaluate inhibition by vapor contact of Aspergillus niger and Penicillium digitatum by selected concentrations of Mexican oregano (Lippia berlandieri Schauer), cinnamon (Cinnamomum verum) or lemongrass (Cymbopogon citratus) essential oils (EOs) added to amaranth, chitosan, or starch edible films. Essential oils were characterized by gas chromatography-mass spectrometry (GC/MS) analysis. Amaranth, chitosan and starch edible films were formulated with essential oil concentrations of 0.00, 0.25, 0.50, 0.75, 1.00, 2.00, or 4.00%. Antifungal activity was evaluated by determining the mold radial growth on agar media inoculated with A. niger and P. digitatum after exposure to vapors arising from essential oils added to amaranth, chitosan or starch films using the inverted lid technique. The modified Gompertz model adequately described mold growth curves (mean coefficient of determination 0.991 ± 0.05). Chitosan films exhibited better antifungal effectiveness (inhibition of A. niger with 0.25% of Mexican oregano and cinnamon EO; inhibition of P. digitatum with 0.50% EOs) than amaranth films (2.00 and 4.00% of cinnamon and Mexican oregano EO were needed to inhibit the studied molds, respectively). For chitosan and amaranth films a significant increase (p<0.05) of lag phase was observed among film concentrations while a significant decrease (p<0.05) of maximum specific growth was determined. Chitosan edible films incorporating Mexican oregano or cinnamon essential oil could improve the quality of foods by the action of the volatile compounds on surface growth of molds.  相似文献   

12.
The influence on biocide performance of some unprecedented physicochemical features of chitosan cast films such as film thickness, pH of the nutrient broth, film neutralization, film autoclave sterilization and temperature exposure were analyzed against Staphylococcus aureus and in some experiments also against Salmonella spp. The work demonstrates for the first time the influence of the release or positive migration of protonated glucosamine fractions from the biopolymer into the microbial culture as the responsible event for the antimicrobial performance of the biopolymer under the studied conditions. From the results, a reliable and reproducible method for the determination of the bactericidal activity of chitosan-based films was developed in an attempt to standardize the testing conditions for the optimum design of active antimicrobial food packaging films and coating applications.  相似文献   

13.
Mohammed Aider 《LWT》2010,43(6):837-2062
During the past decade, there was an increasing interest to develop and use bio-based active films which are characterized by antimicrobial and antifungal activities in order to improve food preservation and to reduce the use of chemical preservatives. Biologically active bio-molecules such as chitosan and its derivatives have a significant potential in the food industry in view of contaminations associated with food products and the increasing concerns in relation with the negative environmental impact of conventional packaging materials such as plastics. Chitosan offers real potential for applications in the food industry due to its particular physico-chemical properties, short time biodegradability, biocompatibility with human tissues, antimicrobial an antifungal activities, and non-toxicity. Thus, chitosan-based films have attracted serious attention in food preservation and packaging technology. This is mainly due to a fact that chitosan exhibits high antimicrobial activity against pathogenic and spoilage micro-organisms, including fungi, and both Gram-positive and Gram-negative bacteria. The aim of the present review was to summarize the most important information on chitosan from its bioactivity point of view and to highlight various preparative methods used for chitosan-based active bio-films and their potential for applications in the food preservation and packaging technology.  相似文献   

14.
The biocide properties of chitosan-based materials have been known for many years. However, typical antimicrobial formulations of chitosan, mostly chitosonium salts, are known to be very water sensitive materials which may impair their use in many application fields such as food packaging or food coating applications. This first work reports on the development and characterization of the antimicrobial properties of novel fully renewable blends of chitosan with more water-resistant gliadin proteins isolated from wheat gluten. Chitosan release to the nutrient broth from a wide range of blends was studied making use of the ninhydrin method. The results indicated that both pure chitosan and its blends with gliadins presented significant antimicrobial activity, which increased with increasing the amount of chitosan in the composite formulation as expected. The gliadins-chitosan blends showed good transparency and film-forming properties and better water resistance than pure chitosan. The release tests revealed that dissolution of the biocide glucosamine groups, i.e. the chitosan water soluble fractions, also increased with the amount of chitosan present in the formulation. The release of these groups was for the first time directly correlated with the antimicrobial properties exhibited by the blends. Thus, incorporation of chitosan into an insoluble biopolymer matrix was revealed as a very feasible strategy to generate novel chitosan-based antimicrobial materials with potential advantages, for instance active food packaging applications.  相似文献   

15.
The mechanical (tensile strength, elongation at break, mechanical work of deformation) and barrier (water vapor permeability and water vapor uptake) properties of chitosan films produced with acetic and lactic acids have been studied as a function of storage time, molecular weight of chitosans, concentration of plasticiser and the storage temperature. It was demonstrated that mechanical properties of chitosan-based films can be improved to a great extent during storage at low temperatures in freezer and refrigerator. Transition of chitosan molecules during storage in the solid state to more extended conformations and free volume changes are considered as mechanisms for the improvement of mechanical and barrier properties of chitosan films. The best mechanical properties are achieved for chitosan films produced with acetic acid and plasticized by the addition of 20% of glycerol. Sharp decrease in water vapor permeability has been demonstrated for thinner chitosan films and related to more dense packing and orientation of linear chitosan macromolecules.  相似文献   

16.
由于采后旺盛的生理代谢, 新鲜水果和蔬菜会出现品质劣变, 采取有效的抗菌保鲜策略是果蔬采后贮藏过程亟待解决的问题。天然大分子壳聚糖作为果蔬的活性包装材料具有来源广泛、安全和可生物降解等优点。本文综述了近年来壳聚糖基涂层/膜用于果蔬保鲜包装的抗菌保鲜效果及其对果蔬品质的影响, 首先介绍了壳聚糖的来源及应用特点以及制备壳聚糖薄膜材料的常用方法, 然后综述了壳聚糖及其与其他生物活性材料复合使用在果蔬保鲜中的应用, 并总结了使用壳聚糖基涂层/膜保鲜对果蔬外观品质、营养品质、挥发性香气物质等方面的影响; 最后, 对壳聚糖在果蔬抑菌保鲜机制方面的研究进行归纳介绍, 以期为其未来发展和应用提供新的思路。  相似文献   

17.
Abstract: Puree prepared from over‐ripe peeled bananas was used as raw material for films processing in a laboratory padder. Pectin and glycerol as plasticizer were added in small concentrations and chitosan nanoparticles (88.79 ± 0.42 nm medium size) incorporated at 0.2% (dry weight basis) as reinforcement material. The mechanical properties, water vapor transmission, thermal stability, and scanning electron microscopy of fractured film surfaces were characterized. Both pectin and glycerol demonstrated an important role in promoting elongation and film handability as was expected. The incorporation of nanoparticles promoted noticeable improvement of the mechanical properties and acted in reducing the water vapor permeation rate, by 21% for films processed with pectin and up to 38% for films processed without pectin, when compared to the control (puree films with no pectin and nanoparticles additions). Microscopic observation revealed a denser matrix when nanoparticles are incorporated into the films. Practical Application: The development of films from fruit purees head to a new strategy for plastic processing from natural resources. The over‐ripe or even waste banana can be adequately prepared for batch films processed with reasonable mechanical and barrier properties, suitable for applications in the food segment. The addition of small fractions of chitosan nanoparticles, form nanocomposites enhancing mechanical and thermal stability broadening potential film applications.  相似文献   

18.
连欢  石晶盈  彭勇 《食品工业科技》2020,41(10):178-183
为探究黄原胶对壳聚糖精油复合膜性能和精油释放的影响,本文利用流延法制备了不同配比的黄原胶-壳聚糖-精油复合膜,并测定膜的物理性能、精油释放和微观结构等指标。结果表明:当黄原胶的添加量在低于50%的范围内,膜的水溶性随黄原胶添加量的增加逐渐升高,含水量、膨胀程度以及断裂伸长率逐渐下降,然而黄原胶的添加量对膜的抗拉强度无显著性影响。添加黄原胶明显增加了精油在食品模拟物中的释放速率,从不同食品模拟物的释放速率来看,由快到慢依次为水包油乳状液和含酒精食品的模拟物、蒸馏水、脂肪食品模拟物;微观结构显示黄原胶影响了膜的内部结构,使膜的横截面出现较大的颗粒,形成不连续的结构特征,该研究为开发应用精油控释型薄膜提供了理论依据。  相似文献   

19.
Thawien Bourtoom  Manjeet S. Chinnan   《LWT》2008,41(9):1633-1641
Biodegradable blend films from rice starch–chitosan were developed by casting film-solution on leveled trays. The influence of the ratio of starch and chitosan (2:1, 1.5:1, 1:1, and 0.5:1) on the mechanical properties, water barrier properties, and miscibility of biodegradable blend films was investigated. The biodegradable blend film from rice starch–chitosan showed an increase in tensile strength (TS), water vapor permeability (WVP), lighter color and yellowness and a decreasing elongation at the break (E), and film solubility (FS) after incorporation of chitosan. The introduction of chitosan increased the crystalline peak structure of starch film; however, too high chitosan concentration yielded phase separation between starch and chitosan. The amino group band of the chitosan molecule in the FTIR spectrum shifted from 1541.15 cm−1 in the chitosan film to 1621.96 cm−1 in the biodegradable blend films. These results pointed out that there was a molecular miscibility between these two components. The properties of rice starch–chitosan biodegradable blend film and selected biopolymer and synthetic polymer films were compared; the results demonstrated that rice starch–chitosan biodegradable blend film had mechanical properties similar to the other chitosan films. However, the water vapor permeability of rice starch–chitosan biodegradable blend film was characterized by relatively lower water vapor permeability than chitosan films but higher than polyolefin.  相似文献   

20.
ABSTRACT The inhibitory activity of chitosan-based edible coatings was assessed against 2 food pathogens ( Staphylococcus aureus and Listeria monocytogenes ) and 1 strain involved in food alteration ( Pseudomonas aeruginosa ) on model agar medium and on a real cheese food product. Colony counting and epifluorescence microscopy methods were conducted, and the results show a nonsignificant influence of the components of the food matrix in the protection of the microbial population against chitosan activity. Numeration on model agar medium showed 100% inhibition of the development of selected Gram-positive bacteria and 77% inhibition on Pseudomonas growth. Chitosan is thought to act through binding to the cytoplasmic membrane surface, and it is possible that the outer membrane protects the Gram-negative cells. Moreover, epifluorescence microscopic results showed a possible chitosan action during a short time duration on the synthesis of nucleic acids and especially on the relative proportion of RNA compared with DNA. This impact was followed by an adaptative mechanism of the cells. Edible chitosan coating could thus be used to increase the microbial lag phase while decreasing the maximum density of selected microorganisms and could have potential application for dairy products preservation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号