首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Well-aligned crystalline ZnO nanorod arrays were fabricated via an aqueous solution route with zinc nitrate and ammonia as precursors. Dip-coating was firstly utilized to form a ZnO film on ITO substrate as a seed layer for subsequent growth of ZnO nanorods. The effects of NH3·H2O/ZnNO3 molar ratio, ZnNO3 concentration, growth temperature and time on nanorod morphology were respectively investigated. It was found that the size of nanorod is mainly determined by the molar ratio and concentration. XRD demonstrates that ZnO nanorods are wurtzite crystal structures preferentially orienting in the direction of the c-axis. SEM confirms that ZnO nanorods grew up perpendicular to the substrate. The diameter and length were tunable in a broad range from 80 nm to 500 nm and 250 nm up to 8 μm, respectively. The aspect ratio changed from 3 to 17 mainly dependent on composition of the aqueous solution.  相似文献   

2.
《Materials Research Bulletin》2013,48(4):1581-1586
In this work, ZnO films, nanorod and nanorod/shell arrays were synthesized on the surface of PET-ITO electrodes by electrochemical methods. ZnO films with high optical transmittance were prepared from a zinc nitrate solution using a pulsed current technique with a reduced pulse time (3 s). The X-ray diffraction pattern of ZnO film deposited on PET-ITO electrode showed that it has a polycrystalline structure with preferred orientations in the directions [0 0 2] and [1 0 3]. ZnO nanorods were synthesized on electrochemical seeded substrate in an aqueous solution containing zinc nitrate and hexamethylenetetramine. In order to increase the stability of PET-ITO electrode to electrochemical and chemical stresses during ZnO nanorods deposition the surface of the electrode was treated with a 17 wt% NH4F aqueous solution. Electrochemical stability of PET-ITO electrode was evaluated in a solution containing nitrate ions and hexamethylenetetramine. ZnO nanorod/shell arrays were fabricated using eosin Y as nanostructuring agent. Photoluminescence spectra of ZnO nanorod and ZnO nanorod/shell arrays prepared on the surface of PET-ITO electrode were discussed comparatively. By employing the 1.5 μm-length ZnO nanorod/shell array covered with a Cu2O film a photovoltaic device was fabricated on the PET-ITO substrate.  相似文献   

3.
Preparation of ZnO nanorods through wet chemical method   总被引:2,自引:0,他引:2  
Hongxia Zhang 《Materials Letters》2007,61(30):5202-5205
The different morphologies of nanorods have been obtained via a simple wet chemical method in the present of polyethylene glycol (PEG, Mw = 4000) by using zinc nitrate hexahydrate (Zn(NO3)2·6H2O) and ammonium hydroxide (NH3·H2O) as the starting materials. Samples were characterized by XRD, EDS, TEM, SEM, ED and PL. XRD results prove the formation of ZnO with wurtzite structure. The ED and HRTEM reveal that single ZnO nanorod is single crystal and preferentially grows up along the [001] direction. The PL spectra showed that the ZnO nanorods have blue emission at 466 nm and green-yellow emission at 542 nm. The influence of reaction temperature, pH in system and evaporation of ammonia on the morphology has been investigated. A possible growth mechanism of ZnO with various morphologies is discussed.  相似文献   

4.
ZnO nanorods were successfully grown on common glass substrates using a simple solvothermal method via the precursors of zinc acetate dihydrate (Zn(CH3COO)2·2H2O) and Hexamethylenetetramine (C6H12N4) with equal molar concentration at 0.01 mol/l, 0.025 mol/l, 0.05 mol/l, and 0.075 mol/l. The ZnO nanorods were characterized by X-ray diffraction (XRD), Scanning electron microscopy, UV-Vis absorption spectrophotometer and photoluminescence (PL) spectrometer. XRD results indicated that all the ZnO nanorods were preferentially grown along [0 0 0 1] direction (c-axis). With an increase of Zn(CH3COO)2·2H2O and C6H12N4 concentration, the diffraction intensity of ZnO nanorod along c-axis also increased. Scanning electron microscopy images showed that the well-faceted hexagonal ZnO nanorods were grown vertically from the common glass substrates. In addition, with the increase of Zn(CH3COO)2·2H2O and C6H12N4 concentration, the exciton band of ZnO nanorods determined by UV-Vis absorption spectra gradually became narrow and the intensity of exciton band also remarkably augmented. Photoluminescence spectra showed that with the increase of Zn(CH3COO)2·2H2O and C6H12N4 concentration, the position of emission peak of ZnO nanorod blue-shifts towards shorter wavelength in UV region and the luminescence intensity remarkably enhances in visible emission range (470-630 nm).  相似文献   

5.
This paper reports additive-free, reproducible, low-temperature solution-based process for the preparation of crystalline ZnO nanorods by homogeneous precipitation from zinc acetate. Also, ZnO nanorod structured dye sensitized solar cells using ruthenium dye (Z907) have been fabricated and characterized. The formation and growth of zinc oxide nanorods are successfully achieved. We analyzed three different synthesis method using solution phase, autoclave and microwave. The calcination effects on the morphology of ZnO nanorods are also investigated. Analysis of ZnO nanorods shows that calcination at lower temperature is resulted in a nanorod growth. Additive-free, well-aligned ZnO nanorods are obtained with the length of 330–558 nm and diameters of 14–36 nm. The XRD, SEM, and PL spectra have been provided for the characterization of ZnO nanorods. Microwave-assisted ZnO nanostructured dye sensitized solar cell devices yielded a short-circuit photocurrent density of 6.60 mA/cm2, an open-circuit voltage of 600 mV, and a fill factor of 0.59, corresponding to an overall conversion efficiency of 2.35% under standard AM 1.5 sun light.  相似文献   

6.
A zinc oxide (ZnO) nanorod based surface acoustic wave (SAW) sensor has been developed and investigated towards hydrogen (H2) gas. The ZnO nanorods were deposited onto a layered ZnO/64° YX LiNbO3 substrate using a liquid solution method. Micro-characterization results revealed that the diameters of ZnO nanorods are around 100 and 40 nm on LiNbO3 and Au (metallization for electrodes), respectively. The sensor was exposed to different concentrations of H2 in synthetic air at operating temperatures between 200 °C and 300 °C. The study showed that the sensor responded with highest frequency shift at 265 °C. At this temperature, stable baseline and fast response and recovery were observed.  相似文献   

7.
Ag/ZnO nanoparticles can be obtained via photocatalytic reduction of silver nitrate at ZnO nanorods when a solution of AgNO3 and nanorods ZnO suspended in ethyleneglycol is exposed to daylight. The mean size of the deposited sphere like Ag particles is about 5 nm. However, some of the particles can be as large as 20 nm. The ZnO nanorods were pre-prepared by basic precipitation from zinc acetate di-hydrate in the ionic liquid 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)amide. They are about 50–300 nm in length and 10–50 nm in width. Transmission electron microscopy (TEM), energy-dispersive X-ray analysis (EDS), X-ray powder diffraction (XRD), UV–Vis spectroscopy, X-ray photoelectron spectroscopy (XPS), and photoluminescence (PL) were used to characterize the resulting Ag/ZnO nanocomposites.  相似文献   

8.
Cadmium sulfide–zinc oxide composite nanorods having at least 100 nm diameters were synthesized by a two-step chemical deposition technique. Polycrystalline nanorods of ZnO were grown on indium tin oxide coated quartz substrate by aqueous chemical growth technique. Cadmium sulfide was deposited on the surface of the ZnO nanorod thin film by chemical bath deposition. The X-ray diffraction results revealed the co-existence of polycrystalline CdS and ZnO, both having hexagonal structures. Neither any phase mixing nor any surface diffusion induced alloying was observed. Micro-Raman study detected a pair of optical phonons at 301 cm−1 and 438 cm−1 corresponding to hexagonal CdS and ZnO, respectively. An enhanced light to electricity conversion efficiency of 2.52% was recorded from CdS–ZnO photoanode based electrochemical solar cell under 0.5 sun illumination condition (50 mW cm−2). We observed a significant enhancement of short circuit current of the electrochemical solar cells due to addition of ionic salt solution to the electrolyte.  相似文献   

9.
TiO2/ZnO composite nanofibers with diameters in the range of 85–200 nm were fabricated via the electrospinning technique using zinc acetate and titanium tetra-isopropoxide as precursors, cellulose acetate as the fiber template, and N,N-dimethylformamide/acetone 1:2 (v/v) mixtures as the co-solvent. After treated with 0.1 mol/L NaOH aqueous solution, TiO2/zinc acetate/cellulose acetate composite nanofibers were transformed into TiO2/Zn(OH)2/cellulose composite nanofibers. TiO2/ZnO composite nanofibers were obtained by calcinating the hydrolyzed composite fibers at 500 and 700 °C for 5 h. The structure and morphology of composite nanofibers were characterized by scanning electron microscopy, transmission electron microscopy, energy dispersive spectroscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. With the blending of ZnO into TiO2, a new crystallite ZnTiO3 was formed in addition to the ZnO and TiO2 crystallites, and the ultraviolet light absorption efficiency was enhanced according to the UV–vis diffuse reflectance spectroscopy. The photocatalytic activity of TiO2/ZnO composite nanofibers toward the decomposition of Rhodamine B and phenol was investigated. Almost 100% Rhodamine B and 85% phenol were decomposed in the presence of TiO2/ZnO composite nanofibers under mild conditions. The results demonstrated that the blending of ZnO in the TiO2/ZnO composite nanofibers increased the photocatalytic efficiency. The optimum ZnO content in the TiO2/ZnO composite nanofibers was 15.76 wt% to reach the most efficient photocatalytic activity. A schematic diagram of photocatalytic mechanism of TiO2/ZnO composite nanofibers was also presented.  相似文献   

10.
In the present work, we have demonstrated a simple, facile, one-step, rapid and cost effective synthesis of ZnO nanorods through the thermal decomposition of zinc acetate and leavening agent (NaHCO3). The silver nanoparticles (AgNPs) were deposited on the surface of ZnO nanorods by photocatalytic reduction of Ag (I) to Ag(0). As synthesized ZnO nanorods and Ag–ZnO nanocomposites were characterized by using X-ray Diffraction, field emission scanning electron microscope, high-resolution transmission electron microscope and diffuse reflectance spectroscopy. The photocatalytic activities of the ZnO nanorods and Ag–ZnO nanocomposites were evaluated for the photodegradation of Methyl Orange (MO) under UV and sunlight irradiation. The use of common leavening agent helps to prevent the aggregation of ZnO nanorods, further it hinders crystallite growth and narrowing the diameter of nanorods by the evolution of carbon dioxide during calcination. The ZnO nanorods and Ag–ZnO nanocomposite exhibited an enhanced photocatalytic activity and separation of photogenerated electron and hole pairs. Due to effect of leavening agent and AgNPs deposited on surface of ZnO nanorods finds best catalyst for the 99% degradation of MO within 30 min compared to ZnO.  相似文献   

11.
CdS/CdSe quantum dot-sensitized solar cells (QDSCs) based on ZnO nanorods, 4.55 μm in length, were studied. Many studies have shown that the performance of QDSCs is limited by a recombination process. Therefore, the interface layer was fabricated on the surface of the ZnO nanorods to retard recombination at the interface between the semiconductor and electrolyte. Overall, the performance of the QDSCs was improved by a surface coating of aluminum isopropoxide (Al2O3) on the ZnO nanorod, which facilitates a decrease in electron recombination and increased adsorption of CdS/CdSe QDs on the ZnO nanorods.  相似文献   

12.
Sonochemical synthesis of nitrogen doped zinc oxide (ZnO:N) nanorods using acetate and nitrate of the starting materials is reported. X-ray diffraction studies reveal the formation of hexagonal wurtzite phase of ZnO in both the cases whereas the crystallite size is found to be greater in acetate route. Precursor dependent growth process is observed as the time period for precipitation is found to be different with different starting materials. Electron microscopic studies show the formation of rod like structures of ZnO and ZnO:N in both acetate and nitrate routes. But, high aspect ratio and uniformity in the morphology of ZnO:N nanorods is observed in acetate route. High resolution images and selected area diffraction patterns of ZnO:N illustrate the nanorods to be c-axis oriented in both the cases. But in nitrate medium, the growth along [0001] direction is affected due to the adsorption of NO3 ? ions onto polar Zn2+ surface leading to smaller length of the nanorods. FTIR studies also support these results showing the existence of sharp N–O symmetric stretching in ZnO:N in nitrate route. Photoluminescence (PL) measurements show red shift of excitonic emission band for ZnO in acetate route.  相似文献   

13.
Ce-doped ZnO nanorod arrays were grown on zinc foils by a hydrothermal method at 180°C. The effects of Ce-doping on the structure and optical properties of ZnO nanorods were investigated in detail. The characterisation of the rod array with X-ray diffraction and X-ray photoelectron spectroscopy indicated that Ce3+ ions were incorporated into the ZnO lattices. There were no diffraction peaks of Ce or cerium oxide in the pattern. From UV-Vis spectra, we observed a red shift in the wavelength of absorption and decreased band gap due to the Ce ion incorporation in ZnO. The photoluminescence integrated intensity ratio of the UV emission to the deep-level green emission (I UV/I DLE) was 1.25 and 2.87, for ZnO and Ce-doped ZnO nanorods, respectively, which shows a great promise for the Ce-doped ZnO nanorods with applications in optoelectronic devices.  相似文献   

14.
In this study, for the first time, the uniform cylindrical MOF-5-BPO (Zn4O(BDC)3(H2O)·0.5ZnO, BDC = 1,4-benzenedicarboxylate, BPO = benzoyl peroxide) crystals with large Brunauer–Emmett–Teller (BET) surface area (3210.2 m2 g−1) was successfully synthesized by room temperature synthesis in the presence of BPO using zinc nitrate hexahydrate (Zn(NO3)2·6H2O) as the zinc source. The pore volumes of MOF-5-BPO materials prepared with different concentrations of BPO were 0.84–1.07 cm3 g−1, higher than that of MOF-5-NP (0.68 cm3 g−1, Zn4O(BDC)3(H2O)3·2ZnO) and MOF-5-H2O2 (0.84 cm3 g−1, Zn4O(BDC)3(H2O)2·2ZnO, H2O2 = hydrogen peroxide). The addition of the peroxides created new pores, which possessed the same diameters as the existing ones, thus increased the pore volume of the product. The concentration of BPO was critical for the pore texture of MOF-5-BPO. Moreover, MOF-5-BPO could store 1.24 wt% hydrogen at 77 K and 100 kPa. Thus, this study points out some information for one to realize the influence of the peroxides over MOF-5 structure and promises the potentiality of large-scale production of MOF-5 structure with large surface area.  相似文献   

15.
High density Mn-doped ZnO nanorod arrays were vertically grown on ITO substrate via hydrothermal reaction at relatively low temperature of 95 °C. The microstructure and magnetism of the arrays have been examined. Field emission scanning electron microscopy shows that the nanorods of 100 nm diameter and 1 μm length grow along the [001] direction. X-ray photoemission spectroscopy demonstrates that Mn is successfully doped into the nanorods. Meanwhile, all the Mn-doped ZnO nanorod arrays are ferromagnetic at room temperature. It is also found that the value of the saturation magnetization (Ms) of the ZnO nanorod arrays firstly increases with increasing the Mn concentration and then decreases. The higher Ms value is 0.11emu/g, which is obtained in the 5 at.% Mn-doped ZnO nanorod arrays. The ferromagnetism comes from the ferromagnetic interaction between the Mn ions, which partly replace Zn ions.  相似文献   

16.
以1,4-二氧六环为溶剂,采用溶剂热法成功实现无模板法可控合成二氧化钛多层次结构微球。通过系统改变反应体系中浓盐酸与四异丙醇钛(TTIP)相对物质的量比能够有效调控二氧化钛形貌。当浓盐酸与TTIP物质的量比控制在0(或0.7或0.9)、1.8、3.6与5.7时,所得产物分别为纳米颗粒构建二氧化钛微球、纳米棒修饰二氧化钛微球、纳米棒花菜结构以及纳米棒海胆结构。在成功进行形貌调控的基础上,进一步探讨了二氧化钛多种结构的形成机理,并对其光催化产氢性能进行了表征。研究发现,在这4种结构中,纳米棒修饰二氧化钛微球具有最佳的光催化性能,这可能是由于同时存在金红石和锐钛矿两种晶型而形成异质结结构所导致。  相似文献   

17.
Aligned ZnO nanorods were synthesized by a simple hydrothermal method without calcination. A seed layer of zinc acetate (ZnAc2)/sodium dodecyle sulfate (SDS) nanocomposite was used for nucleation of ZnO nanorods. First, a ZnAc2/SDS composite was deposited on a Si substrate by spin-coating. And then, ZnO nanorods were grown under hydrothermal conditions at 90 °C. ZnO crystals were grown in the direction of c-axis perpendicular to the surface of the Si substrate. However, nucleation did not occur on the substrate of a ZnAc2 seed layer without SDS, indicating that the presence of the ZnAc2/SDS seed enhanced the nucleation of ZnO crystals. These results show that high dispersion of ZnAc2 in the nanocomposite effectively assists a nucleation of ZnO crystals.  相似文献   

18.
In this work, graphene oxide/zinc oxide (GO/ZnO) hybrid was prepared through a facile hydrothermal process. Transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectra and N2 adsorption and desorption isotherms were used to investigate the morphology, crystal structure, optical properties and specific surface area of GO/ZnO hybrid. It was shown that the well-dispersed ZnO nanorods were deposited on GO homogeneously. Photocatalytic properties of GO/ZnO nanorods hybrid were evaluated under 375 nm light-emitting diode light irradiation for photodegradation of methylene blue (MB). The synergic effect between GO and ZnO was found to lead to an improved photo-generated carrier separation. An optimal GO content has been determined to be 3 wt%, and corresponding the apparent pseudo-first-order rate constant kappkapp is 0.0248 min−1, 4.3 times and 2.5 times more than that of pure ZnO nanorods and commercial P25 photocatalyst, respectively. Moreover, the cyclic photocatalytic test indicated that GO/ZnO hybrid can be reused for degradation of MB, suggesting the possible application of GO/ZnO hybrid as excellent candidate for water treatment.  相似文献   

19.
Zinc oxide (ZnO) nanorods of various morphologies are grown on zinc substrate by pressure-assisted hydrothermal process and the growth mechanism is investigated with the help of molecular dynamics (MD) simulation results. Hydrothermally reacted ZnO2 nanostructure bottom-up formation from Zn substrate is a useful process employed here. A systematic study on the role of process control parameters such as pressure and temperature on nanorod growth has been carried out. Correlation among the process parameters to form ordered nanostructures is established. The effect of pressure on the diameter and length of the grown ZnO nanorod structures is studied, which is precisely tunable. With a decrease in pressure from 500 to 400 kPa, the nanorod diameter is reduced by 22.2 %, while its length is increased by 24.8 %. At lower vapor pressure, the nanorod tips are sharper, whereas at higher vapor pressure they are flat. These variations along with a detailed analysis of MD simulations helps us hypothesize that pressure plays an important role in governing the diffusion of oxygen atom onto zinc surface and generating wurtzite phase. Simulation results clearly show that ZnO nanorods lift off due to their interaction with the Zn atoms on the substrate and the resulting forces.  相似文献   

20.
Morphology-tuned ZnO microcrystals can be prepared by oxidizing zinc metal substrates in aqueous solution using hydrothermal technique. Some typical ZnO growth morphologies such as nanorod superstructures, nanorod arrays, microspheres, hierarchical nanostructures, and split crystals have been chemically fabricated. These microscopic shapes can be finely controlled by selecting Zn(NO3)2 concentration and solvent. A conceptual model was proposed to explain the formation of the as-prepared ZnO structures by selecting proper kinetic environments. This one-step, wet-chemical approach is controllable and reproducible, which can be conveniently transferred to industrial applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号