首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 587 毫秒
1.
《Advanced Powder Technology》2021,32(11):4096-4109
In this study, layered double hydroxide [MII-Al LDH (MII = Mg/Zn)] were used as selective CO2 adsorbents from methane stream. It prepared by microwave (MW) assisted homogenous precipitations via urea hydrolysis. The LDH structures and the type of intercalated anions were confirmed by the X-ray diffraction (XRD), Fourier transform infrared (FTIR), thermal analysis (DSC and TGA), and elemental analysis, and scanning and transmission electron microscopes (SEM and TEM) imaging. The results indicated that; the LDH morphology and the intercalated anions (carbonate and urea species) were dependent on MW power, time, and MII type. The predominant urea species were carbamate and isocyanate for Mg-Al LDH and Zn-Al LDH, respectively. The efficiencies of the LDH were tested towards CO2 capture from methane stream using dynamic flow system under atmospheric pressure. Effect of temperature and adsorption/desorption cycles were studied. The best CO2 adsorption capacities obtained at (30 °C) were 3.25, and 2.47 mmol g−1 for Mg-Al-LDH and Zn-Al LDH, respectively. Whereas, those for the calcined LDH (at 550 °C) were 2.96 and 2.29 mmol g−1 for Mg-Al-LDO and Zn-Al LDO, respectively. The results revealed the role of the intercalated urea derived anions type in enhancing the LDH adsorption properties to selectively capture CO2 from methane stream.  相似文献   

2.
Anionic surfactant intercalated layered double hydroxides (LDH) of high purity are easily prepared via direct coprecipitation and also by the ion exchange method provided that the precursor contains a monovalent anion, e.g., LDH–Cl or LDH–NO3. However, LDH–CO3 is an attractive starting material as it is commercially available in bulk form owing to large-scale applications as a PVC stabilizer and acid scavenger in polyolefins. Thus, intercalation of dodecyl sulfate and dodecylbenzenesulfonate into a commercial (LDH) with approximate composition [Mg0.654Al0.346(OH)2](CO3)0.173 · 0.5H2O] was explored. Direct ion exchange is difficult as the carbonate is held tenaciously. In the regeneration method it is removed by thermal treatment and the surfactant form obtained by reaction with the layered double hydroxide that forms in aqueous medium. Unfortunately the resulting products are impure, poorly crystallized and only partial intercalation is achieved. Better results were obtained using water-soluble organic acids, e.g., acetic, butyric, or hexanoic acid, to aid decarbonation of LDH–CO3. Intercalation proceeded at ambient temperatures with the precursor powder suspended in an aqueous dispersion of the anionic surfactant. The carboxylic acids are believed to assist intercalation by facilitating the elimination of the carbonate ions present in the anionic clay galleries.  相似文献   

3.
Glycerol-plasticized dextrin-alginate films were prepared by solution casting. They contained a fixed amount (16.6% mass/dry film mass) of functional filler based on the reaction products of the LDH, Mg4Al2(OH)12CO3·3H2O, and stearic acid (SA). The films were characterized using infrared (IR) spectroscopy, scanning electron microscopy (SEM) and X-ray diffraction (XRD). The effect of filler composition on water vapour permeability and film stiffness was determined. The ratio of stearic acid (SA) to the LDH (Mg4Al2(OH)12CO3·3H2O) was varied over the full composition range. Infrared spectroscopy and X-ray diffraction studies confirmed that the SA intercalated into the LDH. The Young’s modulus of films attained a maximum value (more than double the value for the neat film) at a filler composition of 60% SA. The water vapour permeability showed a broad minimum at filler compositions of 50–80% SA. Scanning electron microscopy revealed that in this composition range the filler assumes a high-aspect-ratio platelet morphology. This contrasts with the sand rose morphology of the LDH starting material and the globular dispersion of 100% SA in the film.  相似文献   

4.
Ni2+–Mn3+ layered double hydroxide (LDHs) with good crystallinity and uniform morphology has been hydrothermally synthesized at 180 °C for 2 days using urea as hydrolysis agent and ammonium peroxodisulfate as oxidant. The obtained Ni2+–Mn3+ LDHs material has been characterized by XRD, SEM, XPS, FT-IR, and TG–DTA. Ammonium peroxodisulfate as oxidant plays an important role for the formation of Ni2+–Mn3+ CO32− LDHs material, and Mn2+ ions are oxidized into Mn3+ ones during the precipitation of Mn2+ ions, giving rise to layered hydroxide with the hydrotalcite structure. Ni2+–Mn3+ LDHs material with Ni/Mn molar ratio of 4 has a layered structure with a basal spacing of 0.739 nm. The morphology, size, and uniformity of the as-prepared materials connect with the hydrothermal treatment temperatures, and uniform and regular flowerlike spheres with a mean lateral size of 3.5 μm are observed for Ni2+–Mn3+ LDHs material with good crystallinity and uniform morphology.  相似文献   

5.
Layered double hydroxides (LDH) containing (Mg and Al) or (Zn and Fe) were prepared by coprecipitation at constant pH, using NaOH and urea as precipitation agents. The most pure LDH phase in the Zn/Fe system was obtained with urea and in Mg/Al system when using NaOH. The incorporation of phenyl-alanine (Phe) anions in the interlayer of the LDH was performed by direct coprecipitation, ionic exchange and structure reconstruction of the mixed oxide obtained by the calcination of the coprecipitated product at 400 °C. The reconstruction method and the direct coprecipitation in a medium containing Phe in the initial mixture were less successful in terms of high yields of organic–mineral composite than the ionic exchange method. A spectacular change in sample morphology and yield in exchanged solid was noticed for the Zn3Fe sample obtained by ionic exchange for 6 h with Phe solution. A delivery test in PBS of pH = 7.4 showed the release of the Phe in several steps up to 25 h indicating different host–guest interactions between the Phe and the LDH matrix. This behavior makes the preparation useful to obtain late delivery drugs, by the incorporation of the anion inside the LDH layer.  相似文献   

6.
Synthesis conditions of catalysts can significantly affect catalytic activities for a certain reaction. Here, a series of the La0.7Sr0.3MnO3 perovskite-type catalysts was prepared by the sol–gel method under the different synthesis conditions. The faster calefactive velocities during calcination of the xerogel precursors would produce a lot of the impurities and cause the dropped amount of the excessive oxygen in perovskite, as well as the aggregated particles and the decreased surface areas; the higher calcination temperature would sinter the perovskite phases seriously; and the initial pH value of the precursor solution would greatly affect the morphology of the catalysts including the shape and the size, which directly linked to their NOx storage capacity. Moreover, our findings revealed that the NO oxidation ability was determined by the amount of the excessive oxygen species in the perovskite. Here, the optimum synthesis conditions were achieved with the calcination temperature of 700 °C, the calefactive velocity of 2 °C min−1, and the precursor solution of pH = 8. This catalyst presented the best performances for the NO oxidization and NOx storage, i.e. the NO-to-NO2 conversion of 70.2% and the NOx storage capacity of 170.4 μmol g−1.  相似文献   

7.
The multi-staged formation process of titanium oxide nanotubes was investigated in detail under a hydrothermal treatment. During the synthesis procedure, an intermediate stage (tree-like structures) was observed before the formation of the titanium oxide layered structures. The layered structure of titanium oxide generally was considered to exfoliate directly from raw TiO2 materials through the alkaline hydrothermal treatment. The rolling process of the layered structures of titanium oxide was confirmed by TEM observation after the alkaline hydrothermal treatment for the raw TiO2 materials, followed by washing with 4 M HNO3 aqueous solution. The thermal stability of the tube products was investigated by X-ray diffraction (XRD) and scanning electron microscope (SEM). The result showed that both the morphology and crystal phase of titanium oxide nanotubes could be retained even after calcination at 650 °C.  相似文献   

8.
Nanocomposite of K0.3Ti4O7.3(OH)1.7 fiber and anatase TiO2 nanoparticle was prepared by hydrothermal treatment of the K0.3Ti4O7.3(OH)1.7 which was synthesized by calcination of K2CO3 and TiO2 at 1250 °C followed by refluxing in nitric acid. Effects of hydrothermal treatment conditions such as temperature and time on morphology, phase composition and crystal structure of the nanocomposites were extensively studied. Photocatalytic activities of the catalysts prepared at various hydrothermal conditions were evaluated by means of methylene blue decomposition under blacklight irradiation.  相似文献   

9.
Zinc oxide (ZnO) was synthesized using a microwave assisted hydrothermal (MAH) process based on chloride/urea/water solution and under 800 W irradiation for 5 min. In the bath, Zn2+ ions reacted with the complex carbonate and hydroxide ions to form zinc carbonate hydroxide hydrate (Zn4CO3(OH)6·H2O), and the conversion from Zn4CO3(OH)6·H2O to ZnO was synchronously achieved by a MAH process. The as-prepared ZnO has a sponge-like morphology. However, the initial sponge-like morphology of ZnO could change to a net-like structure after thermal treatment, and compact nano-scale ZnO particles were finally obtained when the period of thermal treatment increased to 30 min. Pure ZnO nanoparticles was obtained from calcination of loose sponge-like ZnO particles at 500 °C. The analysis of optical properties of these ZnO nanoparticles showed that the intensity of 393 nm emission increased with the calcination temperature because the defects were reduced and the crystallinity was improved.  相似文献   

10.
Bimetallic layered double hydroxides (LDHs) are promising catalysts for anodic oxygen evolution reaction (OER) in alkaline media. Despite good stability, NiCo LDH displays an unsatisfactory OER activity relative to the most robust NiFe LDH and CoFe LDH. Herein, a novel NiCo LDH electrocatalyst modified with single-atom silver grown on carbon cloth (AgSA-NiCo LDH/CC) that exhibits exceptional OER activity and stability in 1.0 m KOH is reported. The AgSA-NiCo LDH/CC catalyst only requires a low overpotential of 192 mV to reach a current density of 10 mA cm−2, obviously boosting the OER activity of NiCo LDH/CC (410 mV@10 mA cm−2). Inspiringly, AgSA-NiCo LDH/CC can maintain its high activity for up to 500 h at a large current density of 100 mA cm−2, exceeding most single-atom OER catalysts. In situ Raman spectroscopy studies uncover that the in situ formed NiCoOOH during OER is the real active species. Hard X-ray absorption spectrum (XAS) and density functional theory (DFT) calculations validate that single-atom Ag occupying Ni site increases the chemical valence of Ni elements, and then weakens the adsorption of oxygen-contained intermediates on Ni sites, fundamentally accounting for the enhanced OER performance.  相似文献   

11.
A cobalt-based metal–organic framework was used as a precursor to synthesize Co3O4 catalysts exhibiting a hexagonal layered morphology by calcination at varying temperatures. Various characterization techniques, such as XRD, SEM, Raman, H2-TPR, O2-TPD and N2 adsorption–desorption, were used to study the effects of calcination temperature on the grain size, surface area, and pore volume of the catalysts. The Co3O4 catalyst obtained by calcination at 350 °C (Co3O4-350) exhibited the highest catalytic activity for the total oxidation of propane. Furthermore, the small grain size and layered structure of Co3O4-350 allowed it to possess a high specific surface area, a highly exposed {1 1 2} facets, and abundant oxygen defects that facilitated a favorable low-temperature reducibility and oxygen mobility, thereby improving catalytic activity. This research offers a simple strategy for synthesis of Co3O4 with layered structure, highly exposed {1 1 2} facets and rich oxygen defects.  相似文献   

12.
A combination of digestion and further low temperature calcination to crystallize the product was employed to prepare LaFeO3 (LF) and LaCoO3 (LC) powders. Freshly co-precipitated lanthanum and ferric (or cobalt) hydroxide gels by sodium hydroxide were allowed to react at 100 °C under refluxing and stirring conditions for 4-6 h. These oven dried powders were heated at 450 °C to form crystalline LF (or LC) powders. The phase contents and lattice parameters were investigated by X-ray diffraction (XRD). Transmission electron microscope (TEM) investigations were carried out to examine the morphology and average particle size of these powders.  相似文献   

13.
Nanoporous (styrene–divinylbenzene)-based ion exchange resin-based carbons (MPCs) were prepared by MgO-templating synthesis and activated by KOH. MPCs were prepared from a (styrene–divinylbenzene)-based ion exchange resin by the carbonization of a mixture with Mg gluconate at 900 °C. And then, the prepared MPCs were treated with KOH at KOH/MPCs ratios ranging from 0.5 to 4 at 800 °C. Low KOH/MPCs ratios (KOH/MPCs ratio = 1) tended to favor the formation of micropores, whereas higher KOH/MPCs (KOH/MPCs ratio = 4) led to the formation of mesopores. The treated MPCs with a KOH/MPCs ratio = 1 exhibited the best CO2 adsorption value of 266 mg g−1 at 1 bar. However, the treated MPCs with a KOH/MPCs ratio = 3 exhibited the best CO2 adsorption value of 1385 mg g−1 at 30 bar. This result indicated that the CO2 adsorption capacity of nanoporous carbons attributed to the mesopore volume fraction at higher pressure.  相似文献   

14.
Semiconductor photocatalysis attracts widespread interest in water splitting, CO2 reduction, and N2 fixation. N2 reduction to NH3 is essential to the chemical industry and to the Earth's nitrogen cycle. Industrially, NH3 is synthesized by the Haber–Bosch process under extreme conditions (400–500 °C, 200–250 bar), stimulating research into the development of sustainable technologies for NH3 production. Herein, this study demonstrates that ultrathin layered‐double‐hydroxide (LDH) photocatalysts, in particular CuCr‐LDH nanosheets, possess remarkable photocatalytic activity for the photoreduction of N2 to NH3 in water at 25 °C under visible‐light irradiation. The excellent activity can be attributed to the severely distorted structure and compressive strain in the LDH nanosheets, which significantly enhances N2 chemisorption and thereby promotes NH3 formation.  相似文献   

15.
A one-pot synthetic method was used for the preparation of nanoporous carbon containing nitrogen from polypyrrole (PPY) using NaOH as the activated agent. The activation process was carried out under set conditions (NaOH/PPY = 2 and NaOH/PPY = 4) at different temperatures in 600–900 °C for 2 h. The effect of the activation conditions on the pore structure, surface functional groups and CO2 adsorption capacities of the prepared N-doped activated carbons was examined. The carbon was analyzed by X-ray photoelectron spectroscopy (XPS), N2/77 K full isotherms, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The CO2 adsorption capacity of the N-doped activated carbon was measured at 298 K and 1 bar. By dissolving the activation agents, the N-doped activated carbon exhibited high specific surface areas (755–2169 m2 g−1) and high pore volumes (0.394–1.591 cm3 g−1). In addition, the N-doped activated carbons contained a high N content at lower activation temperatures (7.05 wt.%). The N-doped activated carbons showed a very high CO2 adsorption capacity of 177 mg g−1 at 298 K and 1 bar. The CO2 adsorption capacity was found to be dependent on the microporosity and N contents.  相似文献   

16.
Urea biosensors for medical diagnostic monitoring were developed based on the immobilization of urease within layered double hydroxides (LDH). The urease–LDH material was obtained by a stepwise exchange reaction by urease of a Zn3Al–dodecyl sulphate (ZnAl–DS) colloidal suspension. XR diffraction and FTIR analysis show that this method gives rise to a Zn3Al–Urease LDH nanohybrid material with urease dispersion and textural properties. An aqueous suspension of this urease–LDH nanohybrid material was deposited on an insulated semiconductor (IS) structure. Biosensor responses to urea additions were obtained using capacitance (C vs. V) and impedance (Z vs. ω) measurements. An enhanced maximum limit of the dynamic range was observed in the case of the impedance measurements (110 mM) compared to (5.6 mM) the capacitive urea biosensor. The Michaelis–Menten constant was also calculated according to the Lineweaver–Burk plot. It was found that the Km value with immobilized enzymes was lower (Km = 0.67 mM) in comparison with free enzymes. This Km value obtained from the capacitance measurements indicates that the urea degradation is performed within any inhibition action on the IS/Zn3Al–Urease LDH electrode. A comparative study was carried out between these results and those obtained previously, using urease/ZnAl–Cl layered double hydroxides mixture coated on the pH-ISFET transducer.  相似文献   

17.
Lithium iron phosphate/carbon (LiFePO4/C) composites were prepared by a convenient method with water-soluble phenol-formaldehyde resin as the carbon precursor. The morphology, crystalline structure, thermal stability, and composition of as-prepared LiFePO4/C composites were investigated by scanning electron microscopy, X-ray diffraction, thermogravimetric analysis, and Raman spectrometry. Their electrochemical performance was examined based on cyclic voltammogram with a LAND battery testing system while the effect of carbon content and calcination temperature was highlighted. Results show that carbon content and calcination temperature dramatically influence the discharge capacities and rate performance of LiFePO4/C composites. The optimal calcination temperature is 700 °C, and the optimal carbon content (mass fraction) is 8.7%. The LiFePO4/C composite prepared under the optimal conditions exhibits an initial room temperature discharge capacity of 150.2 mA h g?1 at a 0.2 C rate and a constant discharge capacity of about 105.7 mA h g?1 at a 20.0 C rate after 50 cycles, showing promising potential as a novel cathode material for lithium ion batteries.  相似文献   

18.
m-Li2ZrO3 powders were successfully prepared by solid-state reaction method using Li2CO3 and ZrO2 as raw materials. The synthesis was optimized by varying the ball-milling time (0–96 h); Li2CO3 excess (0 or 5 wt%), reaction temperature (700, 800, 900 or 1000 °C), and reaction time (3, 6, 9 or 12 h). The structural, morphological and optical properties of m-Li2ZrO3 powders were examined by X-Ray Diffraction, Thermogravimetric and Differential-Thermal analysis, Scanning Electron Microscopy, High-Resolution Transmission Electron Microscopy, Laser Diffraction, Dynamic Light Scattering and UV–Vis Diffuse Reflectance Spectroscopy. The results show that precursors suitable for the synthesis of fine powders require ball-milling times longer than or equal to 6 h. Highly crystalline m-Li2ZrO3 was synthesized under two distinctive calcination conditions as follows: 900 °C/6h without Li2CO3 excess or 1000 °C/12 h using 5 wt% of Li2CO3 excess. Particle size of as-synthesized powders was found to be in the range from 200 nm to 1 µm. m-Li2ZrO3 was found to be a wide band gap material with apparent optical band gap of 5.5 eV (direct) and 5.1 eV (indirect), which can be used in UV-C applications.  相似文献   

19.
A series of novel CoFe‐based catalysts are successfully fabricated by hydrogen reduction of CoFeAl layered‐double‐hydroxide (LDH) nanosheets at 300–700 °C. The chemical composition and morphology of the reaction products (denoted herein as CoFe‐x) are highly dependent on the reduction temperature (x). CO2 hydrogenation experiments are conducted on the CoFe‐x catalysts under UV–vis excitation. With increasing LDH‐nanosheet reduction temperature, the CoFe‐x catalysts show a progressive selectivity shift from CO to CH4, and eventually to high‐value hydrocarbons (C2+). CoFe‐650 shows remarkable selectivity toward hydrocarbons (60% CH4, 35% C2+). X‐ray absorption fine structure, high‐resolution transmission electron microscopy, Mössbauer spectroscopy, and density functional theory calculations demonstrate that alumina‐supported CoFe‐alloy nanoparticles are responsible for the high selectivity of CoFe‐650 for C2+ hydrocarbons, also allowing exploitation of photothermal effects. This study demonstrates a vibrant new catalyst platform for harnessing clean, abundant solar‐energy to produce valuable chemicals and fuels from CO2.  相似文献   

20.
The thermal evolution of a crystalline organic-inorganic nanohybrid captopril intercalated Mg-Al layered double hydroxide (LDH) [Mg0.68Al0.32(OH)2] (C9H13NO3S)0.130(CO3)0.030·0.53H2O obtained by coprecipitation method is studied based upon in situ high-temperature X-ray diffraction, in situ infrared and thermogravimetric analysis coupled with mass spectroscopy analysis. The results reveal that a metastable quasi-interstratified layered nanohybrid involving carbonate-LDH and reoriented less ordered captopril-LDH was firstly observed as captopril-LDH heat-treated between 140 and 230 °C. The major decomposition/combustion of interlayer organics occur between 270 and 550 °C. A schematic model on chemical and microstructural evolution of this particular drug-inorganic nanohybrid upon heating in air atmosphere is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号