共查询到20条相似文献,搜索用时 15 毫秒
1.
Manmeet Kaur Kailasa Ganapathi Vignesh Mukund Chavi Jain Niranjan S. Ramgir Niyanta Datta S. Bhattacharya A.K. Debnath D.K. Aswal S.K. Gupta 《Materials Chemistry and Physics》2014
ZnO nanotetrapods have been synthesized by carbothermal method. The structure, phase, morphology of the synthesized sample were investigated by X-ray diffraction and X-ray photoelectron spectroscopy, Scanning electron microscopy, Transmission electron microscopy and Selected area electron diffraction. The gas-sensing characteristics of thick films of pure and CuO-functionalized ZnO Nanotetrapods have been compared. Pure ZnO nanotetrapod films were found to be sensitive to both H2S and NO with similar sensitivities, at a temperature of 250–300 °C. It is demonstrated that functionalization of ZnO nanotetrapods with CuO, results in selectivity towards H2S at a lower temperature of 50 °C. 相似文献
2.
Alessandro Di Mauro Emanuele Smecca Alessandro D'Urso Guglielmo G. Condorelli Maria Elena Fragalà 《Materials Chemistry and Physics》2014
A stepwise surface functionalization procedure, based on hybrid covalent and non-covalent approach is herein proposed to anchor tetra-anionic meso-tetrakis(4-sulfonatophenyl)porphyrin on ZnO nanorods. Carboxyalkylphosphonic acids have been proven effective to form stable self-assembled monolayers through the surface grafting of –PO3H2 headgroups. The exposed carboxylic functionalities are suitable for the successful grafting of cationic poly-l-lysine that drives, in water, the non-covalent anchoring of the anionic porphyrin. A stepwise surface characterization, provided by X-ray photoelectron spectroscopy, elucidates the multilayers deposition and surface composition after each process step, thus, giving interesting insights on the chemical speciation of the exposed functionalities. UV–vis spectroscopy confirms the role of ZnO morphology to increase the porphyrin loading onto the investigated surfaces. The proposed approach is effective to achieve deposition of anionic porphyrins on ZnO nanostructures and combines the robustness of covalent functionalization with the versatility and full reversibility of the non-covalent strategies. 相似文献
3.
P.G. Karagiannidis D. GeorgiouC. Pitsalidis A. LaskarakisS. Logothetidis 《Materials Chemistry and Physics》2011
The achievement of the desirable morphology at the nanometer scale of bulk heterojunctions consisting of a conjugated polymer with fullerene derivatives is a prerequisite in order to optimize the power conversion efficiency of organic solar cells. The various experimental conditions such as the choice of solvent, drying rates and annealing have been found to significantly affect the blend morphology and the final performance of the photovoltaic device. In this work, we focus on the effects of post deposition thermal annealing at 140 °C on the blend morphology, the optical and structural properties of bulk heterojunctions that consist of poly(3-hexylthiophene) (P3HT) and a methanofullerene derivative (PCBM). The post thermal annealing modifies the distribution of the P3HT and the PCBM inside the blend films, as it has been found by Spectroscopic Ellipsometry studies in the visible to far-ultraviolet spectral range. Phase separation was identified by AFM and GIXRD as a result of a slow drying process which took place after the spin coating process. The increase of the annealing time resulted to a significant increase of the P3HT crystallinity at the top regions of the blend films. 相似文献
4.
Nicoleta Preda Monica Enculescu Irina Zgura Marcela Socol Elena Matei Violeta Vasilache Ionut Enculescu 《Materials Chemistry and Physics》2013
Cotton fabrics were coated with arrays of ZnO hexagonal prisms using an electroless (catalytic/autocatalytic) deposition process. A typical three step method, similar to those used for electroless deposition of metals on insulating substrates, consisting of pre-activation, activation and deposition steps was employed. The low-dimensional ZnO particles were grown from an aqueous solution containing zinc nitrate as source of zinc ions and dimethylamineborane as reducing agent. The as-obtained ZnO-coated cotton fabrics were characterized from the point of view of structure by X-ray diffraction (XRD) and morphology by scanning electron microscopy (SEM). The XRD studies demonstrate that the ZnO particles have a hexagonal wurtzite crystalline structure. The SEM observations prove that the cotton fibers are homogeneously covered by hexagonal prisms which have uniform base size of approximately 500 nm and height of 1 μm. Optical spectroscopy measurements show that the functionalization with ZnO strongly decreases the transmittance in the UV–vis region of the cotton fabrics. An important characteristic is that the ZnO-functionalized cotton fabrics exhibit superhydrophobicity, with water contact angles exceeding 150°. The technique described is highly reproducible, easy scalable and cheap, allowing a wide range of applications. 相似文献
5.
We report the fabrication of ITO/n-ZnO NW/p-Si sandwiched structure and its photoelectric and piezoelectric conversion properties. This hybrid cell was designed to harvest simultaneously both solar and mechanical energies. ZnO nanowires used in the work were grown on p-type Si substrates employing seed mediated low-temperature aqueous solution method. The synthesized ZnO nanowires were characterized by XRD, SEM and EDX characterization for their structural and morphological evaluation. The as-grown ZnO nanowires showed good crystallinity with c-axis preferable orientation. Free ZnO nanowires and CdSe quantum dots were also incorporated with the vertically grown nanowires and their response in harvesting optical and mechanical energies were investigated. The piezoelectric and photoelectric coupled effects of a ZnO nanowire device in the simultaneous conversion of both optical and mechanical energies have been studied for the first time with the goal of designing piezoelectric and photoelectric hybrid nanogenerator. This presented ITO/n-ZnO NW/p-Si heterojunction architecture is envisaged as a potentially valuable candidate for the next generation energy harvesting devices. Graphene-coated ITO was also used and its response was studied. 相似文献
6.
Improving of photo-oxidative efficiency of ZnO has become of importance to meet the requirements of environmental protection. In this research, ZnO nanomaterials prepared by three different methods (thermal decomposition, precipitation and sol-gel-combustion using metal nitrate and different fuels (urea, oxalic acid and citric acid)). Various molar ratios of citric acid to salt used as variable parameter (0.50, 0.75, 1.00, 1.25, and 1.50). These nanomaterials were characterized by studying their structural, morphological, surface and optical properties. The photocatalytic activity was evaluated by photocatalytic degradation of Remazol Red RB-133 (RR) under UV-light irradiation. The obtained results showed that the photocatalytic efficiency was affected by preparation method, type and ratio of fuel to salt. The optimum is a gel precursor containing zinc nitrate and citric acid prepared in the molar ratio of 1. The highly active nanomaterial was applied for photocatalytic degradation of mixtures of two dyes – (RR) and Methylene Blue (MB). 相似文献
7.
8.
ZnO crystals were grown through a solution-based chemical route at ambient pressure and low temperature. It was found that the solution pH is a dominative factor in determining the morphology of crystals: Rod-like ZnO crystals are apt to be formed at near neutral condition, whereas flower-like structured ZnO crystals are preferred to be formed at higher solution pH. By monitoring the reaction intermediates during the ZnO growth process, it was realized that the crucial role of solution pH in determining the morphology of ZnO crystals is to control the structure of the primary reaction intermediates at the early stage of ZnO growth. Moreover, by appreciate controlling the solution pH together with Zn2+ concentration, various ZnO crystals of rod-like, dumbbell-like and even more complex flower-like structures were obtained without any template, and a pH-dependent morphology controllable growth mechanism is suggested. 相似文献
9.
Guangsheng Pang Xiaonong XuVladimir Markovich Sigalit AviviOleg Palchik Yuri KoltypinGad Gorodetsky Yosef YeshurunHans Peter Buchkremer Aharon Gedanken 《Materials Research Bulletin》2003,38(1):11-16
La1−xSrxMnO3 (x=0.3) (LSM) nanoparticles were prepared by a sonication-assisted coprecipitation method. The coprecipitation reaction is carried out with ultrasound radiation. Lower sintering temperatures are required for the sonication-assisted product. Fully crystallized LSM with an average particle size 24 nm is obtained after the as-prepared mixture is annealed at 900 °C for 2 h. Magnetic properties indicate that the transition temperature from the paramagnetic to ferromagnetic state of the sample is quite sharp and occurs at 366 K for samples annealed for 2 h at 900 and 1100 °C. 相似文献
10.
T. Entradas J.F. Cabrita S. Dalui M.R. Nunes O.C. Monteiro A.J. Silvestre 《Materials Chemistry and Physics》2014
A swift chemical route to synthesize Co-doped SnO2 nanopowders is described. Pure and highly stable Sn1−xCoxO2−δ (0 ≤ x ≤ 0.15) crystalline nanoparticles were synthesized, with mean grain sizes <5 nm and the dopant element homogeneously distributed in the SnO2 matrix. The UV–visible diffuse reflectance spectra of the Sn1−xCoxO2−δ samples reveal red shifts, the optical bandgap energies decreasing with increasing Co concentration. The samples' Urbach energies were calculated and correlated with their bandgap energies. The photocatalytic activity of the Sn1−xCoxO2−δ samples was investigated for the 4-hydroxylbenzoic acid (4-HBA) degradation process. A complete photodegradation of a 10 ppm 4-HBA solution was achieved using 0.02% (w/w) of Sn0.95Co0.05O2−δ nanoparticles in 60 min of irradiation. 相似文献
11.
Yanming Xue Jing LinAmmar Elsanousi Xuewen XuJiao Mi Jie LiXinghua Zhang Yang LuTingting Zhang Chengchun Tang 《Materials Chemistry and Physics》2013
We reported the controllable synthesis of uniformly distributed hierarchical hollow microspheres composed of rutile TiO2 nanorods as building blocks, prepared by a hydrothermal method without employing any templates/substrates or surfactants. The homogenous hollow microspheres were obtained by optimizing the experimental conditions including hydrothermal temperatures and tetrabutyl titanate (TBOT) concentrations. A detailed formation mechanism was also proposed. The samples were analyzed by Brunauer–Emmett–Teller (BET) specific surface area analysis and ultraviolet–visible (UV–Vis) diffuse reflectance spectra (DRS). The photocatalytic results for methylene orange (MO) degradation showed that the hollow hierarchical microspheres exhibited the best photocatalytic activity among the as-synthesized products. Further optimum photocatalytic conditions were determined to study the degradation rate, decolorization and TOC (total organic carbon) removal efficiencies, and reaction kinetics in detail. Under optimum conditions, the contrastive photocatalytic experiments indicated that the photocatalytic activity was enhanced markedly when assembling the single-crystal rutile TiO2 nanorods into hollow hierarchical microstructures. 相似文献
12.
Nanosized Bi2WO6 catalyst exhibited the enhanced photoactivity for the degradation of 4-chlorophenol (4-CP) under visible irradiation compared to the sample prepared by high-temperature solid reaction. The photoactivity of the catalyst was sensitive to pH variation of the suspension. Nanosized Bi2WO6 catalyst showed the highest activity at pH 7.2. The photodegradation of 4-CP by nanosized Bi2WO6 catalyst followed a pseudo-first-order reaction. After three recycling runs for the photodegradation of 4-CP, the activity of the catalyst did not show any significant loss, suggesting that the catalyst was stable under visible irradiation. 相似文献
13.
We report the first observation of piezotronic effect on the output voltage of a flexible heterojunction solar cell. The solar cell was fabricated by contacting poly(3-hexylthiophene) (P3HT) with one end of a ZnO micro/nanowire to form a p-n heterojunction on a flexible polystyrene (PS) substrate. The open-circuit voltage V(oc) of the solar cell was characterized by tuning the strain-induced polarization charges at the interface between ZnO and P3HT. The experimental data were understood based on the modification of the band structure at the p-n junction by the piezopotential, which is referred as a result of the piezotronic effect. This study not only provides an in-depth understanding about the effect but also is useful for maximizing the output of a solar cell using wurtzite structured materials. 相似文献
14.
The intrinsic electrical properties of individual single-crystalline tin dioxide nanobelts, synthesized via catalyst-free physical vapor deposition, were studied and correlated to the surface oxygen deficiency with the presence of various ambient gases, especially hydrogen. Four-terminal field-effect transistor (FET) devices based on individual SnO2 nanobelts were fabricated with SiO2/Si as back gate and RuO2/Au as contacts. Four-probe I–V measurements verify channel-limited transistor characteristics and ensure that the hydrogen gas sensing reflect electrical modification of the nanobelt channel. The demonstrated results of the intrinsic SnO2 nanobelt based hydrogen sensor operating at room temperature provide useful information on the synthesis of room temperature chemo-resistive gas sensors with good sensitivity and stability. To evaluate the impact of surface gas composition on the electrical properties of SnO2 nanobelts, their temperature-dependent resistivity (ρ), effective carrier mobility (μeff) and effective carrier concentration (ne) were determined under different oxygen concentrations. 相似文献
15.
Multi-shelled porous LiNi0.5Mn1.5O4 microspheres as a 5 V cathode material for lithium-ion batteries
Multi-shelled porous LiNi0.5Mn1.5O4 microspheres have been successfully synthesized by a co-precipitation approach combined with high-temperature calcinations. The compositions and structures of multi-shelled LiNi0.5Mn1.5O4 microspheres have been investigated by a variety of characterization methods. The LiNi0.5Mn1.5O4 microspheres are composed of a lot of concentric circular porous shells with constant O, Mn, and Ni concentration, which is ascribed to the fast outward diffusion of Mn and Ni atoms and the slow inward diffusion of O and Li atoms during the calcination process. Electrochemical measurements show that LiNi0.5Mn1.5O4 microspheres deliver good cycling stability and rate capability with discharge capacities of 137.1 (0.1 C), 133.9 (0.2 C), 124.2 (0.5 C), 114.9 (1 C), and 96.0 mAh g−1 (2 C). The LiNi0.5Mn1.5O4 microspheres synthesized by the facile method may be a promising cathode candidate for high energy density lithium-ion batteries. 相似文献
16.
Here we report on a novel chemical route to synthesize homogenous cobalt-doped titanate nanotubes (CoTNT), using an amorphous Co-doped precursor. The influence of the synthesis temperature, autoclave dwell time and metal doping on the structural and microstructural as well as on the optical properties of the synthesized titanate nanotubes is studied and discussed. The optical band gaps of the CoTNT samples are red shifted in comparison with the values determined for the undoped samples, such red shifts bringing the absorption edge of the CoTNT samples into the visible region. CoTNT materials also demonstrate particular high adsorption ability for methylene blue, the amount of the adsorbed dye being higher than the one predictable for a monolayer formation. This suggests the possibility of intercalation of the dye molecule between the TiO6 layers of the TNT structure. It is also shown that the methylene blue sensitized Co-doped nanostructures are highly stable under UV radiation and present a strong and broad absorption in the visible region. 相似文献
17.
In this work, copper oxide-doped (1, 3 and 5 wt%) tin oxide powders have been synthesised by sol–gel method and thick film sensor array has been developed by screen printing technique for the detection of H2S gas. Powder X-ray diffraction pattern shows that the tin oxide (SnO2) doped with 3 wt% copper oxide (CuO) has smaller crystallite size in comparison to 0, 1 and 5 wt% CuO-doped SnO2. Furthermore, field emission scanning electron microscopy manifests the formation of porous film consisting of loosely interconnected small crystallites. The effect of various amounts of CuO dopant has been studied on the sensing properties of sensor array with respect to hydrogen sulfide (H2S) gas. It is found that the SnO2 doped with 3 wt% CuO is extremely sensitive (82%) to H2S gas at 150 °C, while it is almost insensitive to many other gases, i.e., hydrogen (H2), carbon monoxide (CO), sulphur dioxide (SO2) and liquefied petroleum gas (LPG). Moreover, at low concentration of gas, it shows fast recovery as compared to response time. Such high performance of 3 wt% CuO-doped SnO2 thick film sensor is probably due to the diminishing of the p–n junction and the smallest crystallite size (11 nm) along with porous structure. 相似文献
18.
Yong X. Gan Rachel H. Yazawa James L. Smith Jimmie C. Oxley Guang Zhang Jonathan Canino Joanna Ying Gerald Kagan Lihua Zhang 《Materials Chemistry and Physics》2014
This work deals with synthesis and characterization of polyaniline and titanium dioxide nanocomposites for explosive detection and mitigation. The titanium dioxide nanotube array was prepared through electrochemical oxidation of pure titanium in a fluorine ion-containing ethylene glycol water solution followed by annealing at 450 °C in air. Polyaniline was obtained by electrochemical polymerization from an aniline and sulfuric acid solution. Both polyaniline and the nanotube show sorption of 2,4,6-trinitrotoluene (TNT) vapor at 60 °C. Polyaniline modified by alginic acid sodium salt caused color change of TNT solutions. Polyaniline-based sensor showed decrease of electrical resistance in TNT acetonitrile solutions. Ultraviolet light response tests revealed that TNT caused significant drop in open circuit voltage of the titanium dioxide nanotube. In addition, the polyaniline/titanium oxide nanocomposites show colorimetric responses in the explosive solution, which makes them have multiple response mechanisms for nitro-aromatic explosive detection and mitigation. 相似文献
19.
ZnO hollow spherical structures have been synthesized by a facile template-free sonochemical process. The structures and morphologies of products have been characterized by XRD, FESEM and TEM. The results reveal that hollow spherical structures possess a hexagonal wurtzite structure with the in- and out-diameters of about 400 and 500 nm, respectively. The walls of the hollow structures are self-assembled by nanoparticles, partly composed of hexagonal nanoflakes with 40 nm in side lengths. Room temperature photoluminescence (PL) spectrum showed a UV emission at ∼ 384 nm and a broad green emission at the center of 535 nm. A possible formation mechanism was also proposed. 相似文献