首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The potentiostatic electrodeposition of n-type Bi2Te3−ySey thermoelectric films onto stainless steel and gold substrates from nitric acid aqueous solutions has been carried out at room temperature. The cathodic process during the electrodeposition of Bi2Te3−ySey films was investigated by cyclic voltammetric experiments. The structure and surface morphology of Bi2Te3−ySey films deposited on both substrates were characterized by X-ray diffraction (XRD) and environment scanning electron microscopy (ESEM) coupled with energy dispersive spectroscopy (EDS). Electrical and thermoelectric properties of as-deposited films were also measured at room temperature. The results show that the reduction process under the same depositing conditions on gold and stainless steel substrates is very different. On gold substrates, H2SeO3 in the electrolyte is firstly reduced to elemental Se, and then the deposited Se reacts with HTeO2+ and Bi3+ to form Bi2Te3−ySey alloy. On stainless steel substrates, HTeO2+ in the electrolyte is firstly replaced by elemental Fe to produce elemental Te, and subsequently the generated Te reacts with H2SeO3 and Bi3+ to form Bi2Te3−ySey alloy. Analysis of ESEM show that the surface morphology of the films electrodeposited on gold substrates is more compact than that on stainless steel substrates. The XRD patterns indicate that the films electrodeposited on both substrates exhibit preferential orientation along (1 1 0) plane, but the relative peak intensity of (0 1 5) and (2 0 5) planes on stainless steel substrates is stronger than that on gold substrates. The Seebeck coefficient and electrical resistivity of the films deposited on stainless steel substrates are higher than that on gold substrates.  相似文献   

2.
The thermoelectric properties of the tetradymite-type Bi2−xSbxTe2S solid solution (0 ≤ x ≤ 2) are reported for the temperature range 5-300 K. The properties of non-stoichiometric, Cl and Sn doped n- and p-type variants are reported as well. The Seebeck coefficients for these materials range from −170 to +270 μV K−1 while the resistivities range from those of semimetals, 2 mΩ cm, to semiconductors, >1000 mΩ cm. Thermal conductivities were low for most compositions, typically 1.5 W m−1 K−1. Nominally undoped Bi2Te2S shows the highest thermoelectric efficiency amongst the tested materials with a ZT = 0.26 at 300 K that decreased to 0.04 at 100 K. The crystal structure of Sb2Te2S, a novel tetradymite-type material, is also reported.  相似文献   

3.
The semiconducting system Bi2−xFexTe3 (x = 0.0, 0.02, 0.04 and 0.08) was synthesized at 1000 °C for 30 h. The scanning electron microscope (SEM) image reveals the tendency of the Bi2−xFexTe3 system to form a sheet structure with more pronounced alignment and to enhance the formation of some microstructure tubes. The structure of the system under study was refined on the basis of X-ray powder diffraction data using the Rietveld method. The analysis revealed the complete miscibility of Fe in the Bi2Te3 matrix and hence the formation of single phase. The system crystallizes in the space group R-3m [1 6 6]. The lattice parameters and the unit cell size slightly change by the incorporation of Fe. The refinement of instrumental and structural parameters led to reliable values for the RB, RF and Chi2.  相似文献   

4.
The third-order nonlinear optical properties of Bi2S3 nanocrystals doped in sodium borosilicate glass are measured by Z-scan technique. The microstructures of the glass are characterized by means of X-ray diffraction, transmission electron microscopy, scanning transmission electron microscopy, energy dispersion X-ray spectra, and high-resolution transmission electron microscopy. The results show that the Bi2S3 nanocrystals ranging from 10 to 30 nm are determined to be of the orthorhombic crystalline phase, and the third-order optical nonlinear refractive index γ, absorption coefficient β, and susceptibility χ(3) of the glass are determined to be 2.56 × 10−16 m2 W−1, 4.13 × 10−10 mW−1, and 1.43 × 10−10 esu, respectively.  相似文献   

5.
The pulsed magnetron sputtering technique was applied for the preparation of layers of Bi2Te3 and Sb2Te3. Target materials were synthesized in evacuated quartz ampoules by melting elemental powders mixed in stoichiometric proportions. The structure and microstructure of targets and prepared films were characterized by X-ray diffraction, scanning electron microscopy and energy dispersive X-ray analysis. Thermoelectric properties were defined by the Seebeck coefficient and electrical conductivity measurements in the temperature range 320-430 K. The layers were deposited at various powers (0.09-0.20 kW) and currents (0.07-0.16 A) at an argon pressure of about 3.0 Pa. The efficiencies of thermoelectric power obtained for bismuth telluride and antimony telluride were 2-4×10−4 and 2-6×10−3 W K−2 m−1, respectively. The synthesized materials were used for the fabrication of thermoelectric couples with Bi2Te3 as the n-type material and Sb2Te3 as the p-type material. The thermocouples were annealed under vacuum to obtain optimum thermoelectric properties. The Seebeck coefficient of thermocouples was evaluated by a Seebeck scanning microprobe [Platzek D, Karpinski G, Stewie C, Muchilo D, Müller E. Proceedings of the second European conference on thermoelectrics, Poland, Cracow, September 15-17, 2004].  相似文献   

6.
Single-phase Bi0.5Sb1.5Te3 compounds have been prepared by hydrothermal synthesis at 150 °C for 24 h using SbCl3, BiCl3 and tellurium powder as precursors. X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM) have been applied to analyze the phase distributions, microstructures and grain sizes of the as-grown Bi0.5Sb1.5Te3 products. It is found that the hydrothermally synthesized Bi0.5Sb1.5Te3 nanopowders have a morphology dominated by irregular hexagonal sheets due to the anisotropic growth of the crystals. The Bi0.5Sb1.5Te3 nanosheets are parallelly stacked in certain direction to form sheet-agglomerates attribute to the temperature gradients in the solution.  相似文献   

7.
Bismuth tellurium selenide (Bi2TeySe3−y) nanoparticles for thermoelectric applications are successfully prepared via a water-based chemical reaction under atmospheric conditions. The nanostructured compound is prepared using a complexing agent (ethylenediaminetetraacetic acid) and a reducing agent (ascorbic acid) to stabilize the bismuth precursor (Bi(NO3)3) in water and to favor the reaction with reduced sources of tellurium and selenium. The resulting powder is smaller than ca. 100 nm and has a crystalline structure corresponding to the rhombohedral Bi2Te2.7Se0.3. The nanocrystalline powder is sintered via a spark plasma sintering process to obtain a sintered body composed of nano-sized grains. Important transport properties of the sintered body are measured to calculate its most important characteristic, the thermoelectric performance. The results demonstrate a relationship between the nanostructure of the sintered body and its thermal conductivity.  相似文献   

8.
The structural and electronic properties of the dominant intrinsic defect of the Cd vacancy (VCd) and the Cl impurity in CdTe are studied using density functional theory. VCd is calculated to be a shallow double acceptor. Cl will substitute Te site (ClTe) and then act as a shallow donor in CdTe. Moreover, ClTe can bond with VCd, forming the defect complexes of ClTeVCd. ClTeVCd is a shallower acceptor than that of VCd. The defect complexes of (ClTeVCd)−1 can improve the p-doping behavior of CdTe.  相似文献   

9.
CuIn3Se5, prepared by the fusion technique crystallizes in the P-chalcopyrite structure and exhibits n-type conduction ascribed to indium excess. The electrical conductivity follows an Arrhenius-type law with activation energy of 0.35 eV and an electron mobility of 10−4 cm2 V−1 s−1 in conformity with small polaron hopping. The optical gap (1.19 eV), determined from the diffuse reflectance spectrum, is properly matched to the sun spectrum. CuIn3Se5 is chemically stable and a corrosion rate of only 1.2 μmol year−1 is found at neutral pH. The slope and the intercept to C−2 = 0 of the Mott Schottky plot gives respectively an electron density of 3.75 × 1016 cm−3 and a flat band potential of −0.22 VSCE. The conduction band (−0.74 VSCE) therefore lies below the potential of H2O/H2 couple and as application, H2 photo-production is successfully achieved over CuIn3Se5. The best performance is obtained in S2O32− solution (10−2 M, pH ∼ 7) with an evolution rate of 0.54 mL g−1 min−1. The conversion efficiency (0.13%) is due to the formation of small depletion width (230 nm) and a large diffusion length compared to a very large penetration depth (∼1 μm). Attempts have been made to improve the photoactivity and the hetero-system CuIn3Se5/WO3 is compared favorably with respect to CuIn3Se5. The photoactivity is ascribed to electrons transfer from the sensitizer CuIn3Se5-conduction band (CB), acting as electrons pump, to WO3-CB (−0.4 VSCE) resulting in the enhanced water reduction.  相似文献   

10.
CsTe2O6 adopts a rhombohedrally distorted pyrochlore related structure due to the 1:3 ordering of Te4+ and Te6+ in the octahedral sites respectively. Phases of the type CsTe2−xWxO6 were found to have the cubic pyrochlore structure from x = 0.2 to 0.5. These phases all contain Te4+ and Te6+ (mixed with W6+) and are disordered in octahedral sites of the pyrochlore structure. This mixed valence situation results in strong optical absorption in the visible region of the spectrum but does not produce a measurable electrical conductivity.  相似文献   

11.
Bi2Te3/Polythiophene (PTH) thermoelectric bulk composite materials were prepared by a two-step method. Firstly, Bi2Te3 and PTH nanopowders were prepared by hydrothermal synthesis and chemical oxidative polymerization, respectively. Secondly, the mixture of the Bi2Te3 and PTH nanopowders (50:50 wt) was pressed under vacuum at 80 MPa and 298, 473, or 623 K. For comparison, Bi2Te3 powders were hot pressed at 623 K. The bulk materials were analyzed by conventional methods, such as X-ray diffraction (XRD), Fourier transform infrared spectroscopy, thermogravimetric analysis (TGA) and field emission scanning electron microscopy equipped with electron dispersive X-ray spectroscopy. The XRD and TGA results showed that the PTH decomposed when the hot pressing temperature exceeded 473 K, and Bi2Te2S phase was formed. The thermoelectric properties of the bulk composite materials were investigated. The composite pressed at 623 K showed a higher power factor, ~2.54 μ Wm−1 K−2 at 473 K, which is as ~20 times as that of the composite pressed at 473 K, although, it is still much lower than that of the pressed Bi2Te3 material (~1,266 μ Wm−1 K−2 at 348 K).  相似文献   

12.
A lithium bismuth phosphate, Li2Bi14.67(PO4)6O14, has been synthesized for the first time by the solid-state method. The crystal structure was determined by single crystal X-ray diffraction at 150 K. Li2Bi14.67(PO4)6O14 crystallizes in the monoclinic system C2/c (No. 15), with a = 30.8189(4) Å, b = 5.2691(3) Å, c = 24.5302(3) Å, β = 122.84(2)°, V = 3346.81(1) Å3 and Z = 2. The structure along the b axis consists of layers of [Bi2O2] units as the basic building block. These are separated by isolated PO4 and LiO4 tetrahedra. The oxygen co-ordination around two of the phosphorus atoms is disordered. Solid-state 7Li NMR studies confirm the presence of lithium in the structure. The material shows ionic conductivity of the order of 10−5 S cm−1 at 600 °C.  相似文献   

13.
Anatase TiO2 nanocrystals (NCs) were deposited onto patterned carbon nanotube (CNT) bundle arrays to form a TiO2/CNT composite using metal organic chemical vapor deposition (MOCVD) using titanium-tetraisopropoxide (Ti(OC3H7)4) as a source reagent. The N-doped TiO2/CNT composite was then fabricated using nitrogen plasma treatment. The structural and spectroscopic properties of TiO2/CNT composites were characterized by field-emission scanning electron microscopy, micro-Raman spectroscopy and X-ray photoelectron spectroscopy. The combined geometrical structure and low electron affinity effects of N-doped TiO2 led to a low turn-on field of 1.0 V μm−1 at a current density of 10 μA cm−2, a low threshold field of 1.9 V μm−1 at a current density of 1 mA cm−2, a high field enhancement factor of 3.0 × 103, and long-term stability for the N-doped TiO2/CNT composite. The results revealed that the N-doped TiO2/CNT composite can be a potential candidate for field emission devices.  相似文献   

14.
Crystalline Na3Bi2P3O12, K3Bi2P3O12 and glassy K3Bi2P3O12 compounds were prepared by solid-state reaction method. The prepared samples are characterized by X-ray powder diffraction, Fourier transform infrared spectroscopy and differential scanning calorimetry. The crystalline materials are found to be orthorhombic. The electrical conductivity measurements on the crystalline and glassy samples show that at ∼373 K, the σDC for crystalline K3Bi2P3O12 (0.81 × 10−8 S/cm) is about two orders of magnitude higher than the corresponding glassy phase (1.25 × 10−10 S/cm). The scaling results show that the conductivity relaxation mechanism is independent of temperature.  相似文献   

15.
Bi2(Te, Se)3 and Bi2Se1.2Te1.8 bulk products were synthesised using standard solid-state microwave synthesis. The Bi2(Te, Se)3 and Bi2Se1.2Te1.8 were then deposited thermally onto glass substrates at a pressure of 10? 6 Torr. The structure of the samples was analysed using X-ray diffraction (XRD), and the powders and thin films were observed to be polycrystalline and rhombohedral in structure. The surface morphology of the samples was determined using scanning electron microscopy (SEM). From the measurements of optical properties, the energy gap values for the Bi2Te3, Bi2Se3, and Bi2Se1.2Te1.8 thin films were 0.43, 0.73, and 0.65 eV, respectively.  相似文献   

16.
The p-type (Bi0.25Sb0.75)2Te3 and n-type Bi2(Te0.94Se0.06)3 ingots were prepared by cooling at various cooling rates C after melting so that they have an intermediate state between the polycrystalline and Bridgman ingots which lowers their thermal conductivity κ, where C was changed from 0.10 to 2375 K/min in an evacuated glass tube. When the ingots were cooled at C = 0.50 K/min under the uniaxial temperature gradient of 5 K/cm, it was observed that the c axis of some grains points to the freezing direction. The electrical resistivity ρ, Seebeck coefficient α and κ of ingots were measured at 298 K along the freezing direction, so that ρ and κ at C = 0.50 K/min were lower by 20-30% and 9% than those of the corresponding Bridgman ingots. The thermoelectric figure of merits ZT(=α2T/ρκ) estimated for the p- and n-type ingots then reached high values of 1.27 and 1.25 at 298 K, respectively.  相似文献   

17.
Cu-4.5Cr and Cu-4.5Cr-3Ag (in wt%) alloys without or with 10 wt% nanocrystalline Al2O3 and ZrO2 dispersion have been synthesized by mechanical alloying or milling and consolidated by laser assisted sintering in Ar atmosphere. Microstructural characterization by scanning and transmission electron microscopy and phase analysis by X-ray diffraction suggest that the alloyed matrix undergoes significant grain growth after sintering while the dispersoids retain their ultrafine size and uniform distribution in the matrix. The dispersion of nano-Al2O3 is more effective than that of nano-ZrO2 in enhancing the mechanical properties due to the smaller initial particle size of Al2O3 than that of ZrO2. In general, laser sintering of mechanically alloyed Cu-4.5Cr and Cu-4.5Cr-3Ag alloys with 10 wt% nanocrystalline Al2O3 at 100 W laser power and 1-2 mm s−1 scan speed yields the optimum combination of high density (7.1-7.5 mg m−3), hardness (165-225 VHN), wear resistance and electrical conductivity (13-20% IACS).  相似文献   

18.
Mass density, glass transition temperature and ionic conductivity are measured in xLi2O-(40 − x)Na2O-50B2O3-10Bi2O3 and xK2O-(40 − x)Na2O-50B2O3-10Bi2O3 glass systems with 0 ≤ x ≤ 40 mol%. The strength of the mixed alkali effect in Tg, dc electrical conductivity and activation energy has been determined in each glass system. The magnitudes of the mixed alkali effect in Tg for the mixed Li/Na glass system are much smaller than those in the mixed K/Na glasses. The impact of mixed alkali effect on dc electrical conductivity in mixed Li/Na glass system is more pronounced than in the K/Na glass system. The results are explained based on dynamic structure model.  相似文献   

19.
This paper presents an increase to x = 0.67 of the zirconium content in the conductive Bi2−xZrxO3+δ solid solution. Complete incorporation of Zr in the βIII-Bi2O3 structure, confirmed by X-ray powder diffraction, has produced a phase with a lower volume and superior conductivity than those predicted by an earlier study. The observed βIII-δ Bi2−xZrxO3+δ phase transition around 730 °C has been characterised for the first time and shows a segregation of a mixture of predominantly γ-Bi2O3 and approximately 30% of the ZrO2, before total reincorporation of the Zr in the high temperature δ-phase.  相似文献   

20.
The electrical conductivity of SrSn1−xFexO3−δ increases with the Fe content and reaches a value of ∼10−1 S/cm at 25°C at x=1. Compounds with low Fe content exhibit both ionic and electronic conductivity, while the higher Fe content perovskites are mainly electronic conductors with a conductivity independent of the oxygen partial pressure over a wide range from 0.21 to 10−22 atm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号