首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Aligned n-ZnO nanowires were synthesized via simple thermal evaporation process by using metallic zinc powder in the presence of oxygen on p-silicon (Si) substrate. The as-synthesized aligned ZnO nanowires were characterized in terms of their structural and optical properties by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction process (XRD) and room-temperature photoluminescence (PL) properties. The detailed structural and optical studies revealed that the as-grown nanowires are single crystalline with the wurtzite hexagonal phase and exhibit good optical properties. From application point of view, the as-grown aligned n-ZnO nanowires on p-Si substrates were used to fabricate heterojunction diodes. The fabricated heterojunction diodes exhibited good electrical (I-V) properties with the turn-on voltage of approximately 1.0 V. A temperature-dependant (from 25 degrees C approximately 130 degrees C), I-V characteristics for the fabricated device was also demonstrated in this paper. The presented results demonstrate that the simply grown aligned n-ZnO nanowires on p-Si substrate can be efficiently used for the fabrication of efficient heterojunction devices.  相似文献   

2.
ZnO/Si solar cell fabricated by spray pyrolysis technique   总被引:1,自引:0,他引:1  
The ZnO/Si heterojunctions have been prepared by depositing n-ZnO films doped with aluminium on p-Si by spray pyrolysis method. Heterojunction solar cells were fabricated using the configuration Al/ZnO/Si/In. The electrical properties of the heterojunction are investigated by means of current–voltage measurements in the temperature range 295–375 K. The cells show the rectifying behaviour characterized by the current–voltage (I–V) measurement under a dark condition, while photoelectric effects have been exhibited under the illumination. As a result, the conversion efficiency of the fabricated cell of about 6.6% was obtained.  相似文献   

3.
Zinc oxide nanowires (ZnO NWs) were successfully synthesized on the ITO/PET polymer substrates by a hydrothermal method. X-ray diffraction, scanning electron microscopy, and transmission electron microscopy investigations were carried out to characterize the crystallinity, surface morphologies, and orientations of these NWs, respectively. The influence of NW surface morphologies on the optical and electrical properties of ZnO NWs was studied. The hydrothermally grown ZnO NWs with direct band gap of 3.21 eV emitted ultraviolet photoluminescence of 406 nm at room temperature. Field emission measurements revealed that the threshold electric fields (Eth, current density of 1 mA/cm2) of ZnO NWs/ITO/PET and ZnO NWs/ZnO/ITO/PET are 1.6 and 2.2 V/microm with the enhancement factors, beta values, of 3275 and 4502, respectively. Furthermore, the field emission performance of ZnO NWs deposited on the ITO/PET substrate can be enhanced by illumination with Eth of 1.3 V/microm and displays a maximum emission current density of 18 mA/cm2. The ZnO NWs successfully grown on polymer substrate with high transmittance, low threshold electric field, and high emission current density may be applied to a flexible field emission display in the future.  相似文献   

4.
ZnO films were prepared on p-Si substrates using pulsed laser deposition (PLD) and n-ZnO/p-Si heterojunctions were fabricated at different oxygen partial pressures. The effects of oxygen pressures on crystallinity and surface morphology of ZnO films and the I-V characteristics of n-ZnO/p-Si heterojunctions were studied. It was found that the films grown in the oxygen pressure range from 10−5-10−2 Torr were all c-axis oriented. The surface morphologies were strongly dependent on the oxygen partial pressure. The current-voltage (I-V) characteristics of the heterojunctions could be classified into two categories depending on the oxygen pressure. At low pressure (10−5-10−4 Torr), the I-V curves were similar to those of common p-n junctions. As the oxygen pressure increased to 10−3 Torr, the I-V curves changed markedly. Based on the I-V characteristics, an energy band diagram of n-ZnO/p-Si was proposed.  相似文献   

5.
夏雨  梁齐  粱金 《真空》2011,48(5)
用脉冲激光沉积法分别在不同电阻率的p型和n型Si( 100)衬底上制备了不掺杂ZnO薄膜,相应制成n-ZnO/p-Si和n-ZnO/n-Si异质结器件.利用X射线衍射和原子力显微镜对ZnO薄膜进行的结构和形貌测试表明,薄膜结晶情况良好,具有高度的c轴择优取向,表面颗粒大小、分布均匀.对器件的I-V特性测试表明,在无光条件下,制备的n-ZnO/p-Si异质结漏电流很低,而n-ZnO/n-Si同型异质结漏电流要稍大一些;随衬底电阻率的增大,上述器件的阈值电压变小;器件在光照下的漏电流明显比无光条件下的要大.  相似文献   

6.
Today, it has become an important task to modify existing traditional silicon-based solar cell factory to produce high-efficiency silicon-based heterojunction solar cells, at a lower cost. Therefore, the aim of this paper is to analyze CH3NH3PbI3 and ZnO materials as an emitter layer for p-type silicon wafer-based heterojunction solar cells. CH3NH3PbI3 and ZnO can be synthesized using the cheap Sol-Gel method and can form n-type semiconductor. We propose to combine these two materials since CH3NH3PbI3 is a great light absorber and ZnO has an optimal complex refractive index which can be used as antireflection material. The photoelectric parameters of n-CH3NH3PbI3/p-Si, n-ZnO/p-Si, and n-Si/p-Si solar cells have been studied in the range of 20–200 nm of emitter layer thickness. It has been found that the short circuit current for CH3NH3PbI3/p-Si and n-ZnO/p-Si solar cells is almost the same when the emitter layer thickness is in the range of 20–100 nm. Additionally, when the emitter layer thickness is greater than 100 nm, the short circuit current of CH3NH3PbI3/p-Si exceeds that of n-ZnO/p-Si. The optimal emitter layer thickness for n-CH3NH3PbI3/p-Si and n-ZnO/p-Si was found equal to 80 nm. Using this value, the short-circuit current and the fill factor were estimated around 18.27 mA/cm2 and 0.77 for n-CH3NH3PbI3/p-Si and 18.06 mA/cm2 and 0.73 for n-ZnO/p-Si. Results show that the efficiency of n-CH3NH3PbI3/p-Si and n-ZnO/p-Si solar cells with an emitter layer thickness of 80 nm are 1.314 and 1.298 times greater than efficiency of traditional n-Si/p-Si for the same sizes. These findings will help perovskites materials to be more appealing in the PV industry and accelerate their development to become a viable alternative in the renewable energy sector.  相似文献   

7.
Structural and optical properties of ZnO–GaP core–shell nanowires were studied by means of electron microscopy and microphotoluminescence. A thin ZnO shell layer was deposited by RF sputtering on GaP nanowires, which were grown on GaP (111)B substrates under vapour–liquid–solid mode by MOVPE. The SEM and TEM characterization showed that the ZnO shells fully covered the surface of the NWs from top to bottom. Each GaP NW core is composed of many well-defined twinned segments with the planes of twinning oriented in perpendicular to the growth direction. This was contradicted in kinked GaP NWs: their growth direction was initially perpendicular to the twinning planes, but once the NW had kinked, it changed to lie within the twinning planes. The ZnO shell deposited on the GaP core has a columnar morphology. The columns are inclined at a positive angle close to 70° with respect to the GaP growth axis. All observed columns were tilted at this angle to the growth direction. Micro-photoluminescence study showed that thermal annealing improved the quality of the ZnO crystallographic structure; the annealing made observable the photoluminescence peak related to the band-to-band transition in ZnO.  相似文献   

8.
ZnO nanowires were grown on indium tin oxide (ITO) coated glass substrates at a low temperature of 90 degrees C using an aqueous solution method. The ZnO seeds were coated on the ITO thin films by using a spin coater. ZnO nanowires were formed in an aqueous solution containing zinc nitrate hexahydrate (Zn(NO3)2 x 6H2O) and hexamethylenetetramine (C6H12N4). The pH value and concentration of the solution play an important role in the growth and morphologies of ZnO nanowires. The size of ZnO naonowires increased as the concentration of the solution increased. It was formed with a top surface of hexagonal and tapered shape at low and high pH values respectively. Additionally, the single crystalline structure and optical property of the ZnO nanowires were investigated using high-resolution transmission electron microscopy and photoluminescence spectroscopy.  相似文献   

9.
The Ag/n-ZnO/p-Si(100)/Al heterojunction diodes were fabricated by pulsed laser deposition of zinc oxide (ZnO) thin films on p-type silicon. The X-ray diffraction analysis shows the formation of ZnO thin film with hexagonal structure having strong (002) plane as preferred orientation. The energy band gap of ZnO films simultaneously deposited on quartz substrate was calculated from the measured UV–Visible transmittance spectra. High purity vacuum evaporated silver and aluminum thin films were used to make contacts to the n-ZnO and p-silicon, respectively. The current–voltage and capacitance–voltage characteristics of Ag/n-ZnO/p-Si(100)/Al heterostructures were measured over the temperature range of 80–300 K. The Schottky barrier height and ideality factor were determined by fitting of the measured current–voltage data into thermionic emission diffusion equation. It is observed that the barrier height decreases and the ideality factor increases with decrease of temperature and the activation energy plot exhibit non-linear behavior. This decrease in barrier height and increase in ideality factor at low temperature are attributed to the occurrence Gaussian distribution of barrier heights. The capacitance–voltage characteristics of Ag/n-ZnO/p-Si(100)/Al heterojunction diode were also studied over the wide temperature range. Capacitance–voltage data are used to estimate the barrier height and impurity concentration in n-type ZnO.  相似文献   

10.
Rout CS  Rao CN 《Nanotechnology》2008,19(28):285203
n-ZnO NR/p-Si and n-ZnO NR/p-PEDOT/PSS heterojunction light-emitting diodes (LEDs) have been fabricated with ZnO nanorods (NRs) grown by a low-temperature method as well as by employing pulsed laser deposition (PLD). The low-temperature method involves growing the ZnO nanorods by the reaction of water with zinc metal. The current-voltage (I-V) characteristics of the heterojunctions show good rectifying diode characteristics. The electroluminescence (EL) spectra of the nanorods show an emission band at around 390?nm and defect related bands in the 400-550?nm region. Room-temperature electroluminescence is detected under forward bias for both the heterostructures. With the low-temperature grown nanorods, the defect related bands in the 400-550?nm range are more intense in the EL spectra, whereas with the PLD grown nanorods, only the 390?nm band is prominent.  相似文献   

11.
In this paper, the fabrication and characterization of a heterojunction solar cell based on p-Cu2O/n-ZnO nanowires on ITO glass are presented. ZnO aligned nanocrystal seed layer is firstly prepared by RF magnetron sputtering technique, and then vertical ZnO nanowire arrays with an acicular crystal structure are obtained by using a chemical bath deposition processing. The results indicate that the ZnO nanowires with a diameter of about 50 nm and 500 nm in length can be easily obtained. The absorption and transmittance of the ZnO nanowires are studied. It is also noted that the Cu2O can fill well into the space between ZnO nanowires by an electrodeposition process. Furthermore, the effect of the Cu2O orientation on the cell performance is also presented.  相似文献   

12.
In this paper, we report a flexible inorganic/organic heterostructure light-emitting diode, in which inorganic ZnO nanowires are the optically active components and organic polyaniline (PANI) is the hole-transporting layer. The fabrication of the hybrid LED is as follows, the ordered single-crystalline ZnO nanowires were uniformly distributed on flexible polyethylene terephthalate (PET)-based indium-tin-oxide-coated substrates by our polymer-assisted growth method, and proper materials were chosen as electrode and carrier. In this construction, an array of ZnO nanowires grown on PET substrate is successfully embedded in a polyaniline thin film. The performance of the hybrid device of organic-inorganic hetero-junction of ITO/(ZnO nanowires-PANI) for LED application in the blue and UV ranges are investigated, and tunable electroluminescence has been demonstrated by contacting the upper tips of ZnO nanowires and the PET substrate. The effect of surface capping with polyvinyl alcohol (PANI) on the photocarrier relaxation of the aqueous chemically grown ZnO nanowires has been investigated. The photoluminescence spectrum shows an enhanced ultraviolet emission and reduced defect-related emission in the capped ZnO NWs compared to bare ZnO. The results of our study may offer a fundamental understanding in the field of inorganic/organic heterostructure light-emitting diode, which may be useful for potential applications of hybrid ZnO nanowires with conductive polymers.  相似文献   

13.
Arrays of ZnO nanowires (NWs) were fabricated within the well-distributed pores of anodic aluminium oxide (AAO) template by a simple chemical method. The photoluminescence (PL) and field emission (FE) properties of the AAO/ZnO NWs hybrid structure were investigated in detail. The hybrid nanostructure exhibits interesting PL characteristics. ZnO NWs exhibit UV emission at 378 nm and two prominent blue-green emissions at about 462 and 508 nm. Intense blue emission from the AAO template itself was observed at around 430 nm. Herein, for the first time we report the FE characteristics of the ZnO/AAO hybrid structure to show the influence of the AAO template on the FE property of the hybrid structure. It is found that the turn-on electric field of the vertically grown and aligned ZnO NWs within the pores of AAO template is lower than the entangled unaligned ZnO NWs extracted from the template. Although the AAO template exhibits no FE current but it helps to achieve better FE property of the ZnO NWs through better alignment. The turn-on electric field of aligned NWs was found to be 3 V μm−1 at a current of 0.1 μA. Results indicate that the AAO embedded ZnO NW hybrid structure may find useful applications in luminescent and field emission display devices.  相似文献   

14.
The light emission was investigated in light-emitting diodes (LEDs) constructed with n-ZnO and p-Si nanowires (NWs). ZnO NWs were synthesized by thermal chemical vapor deposition and Si NWs were formed by crystallographic wet etching of a Si wafer. The LEDs were fabricated using the NWs via dielectrophoresis (DEP) and direct transfer methods. The DEP method enabled to align the ZnO NW at the position that led to p-n heterojunction diodes by crossing with the transferred Si NW. The I-V curve of the p-n heterojunction diode showed the well-defined current-rectifying characteristic, with a turn-on voltage of 3 V. The electroluminescence spectrum in the dark showed the strong emission at approximately 385 nm and the broad emission centered at approximately 510 nm, at a forward bias of 30 V. Under the illumination of 325-nm-wavelength light, the luminescence intensity at 385 nm was dramatically enhanced, compared to that in the dark, probably due to the electric-field-induced enhancement of luminescence.  相似文献   

15.
The epitaxial growth of indium phosphide nanowires (InP NWs) on transparent conductive aluminum-doped zinc oxide (ZnO:Al) thin films is proposed and demonstrated. ZnO:Al thin films were prepared on quartz substrates by radio frequency magnetron sputtering, then InP NWs were grown on them by plasma enhanced metal organic chemical vapor deposition with gold catalyst. Microstructure and optical properties of InP nanowires on ZnO:Al thin films were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectric spectroscopy (XPS), photoluminescence and Raman spectroscopy at room temperature. SEM shows that randomly oriented and intersecting InP nanowires were grown to form a network on ZnO:Al thin films. Both wurtzite (WZ) and zincblende (ZB) structures coexist in the random orientation InP NWs on ZnO:Al thin film had been proved by XRD analysis. XPS result indicates Zn diffusion exists in the InP NWs on ZnO:Al. The photoluminescence spectra of InP nanowires with Zn diffusion present an emission at 915 nm. Zn diffusion also bring effect on Raman spectra of InP NWs, leading to more Raman-shift and larger relative intensity ratio of TO/LO.  相似文献   

16.
The optimization of chemical vapour deposition (CVD) parameters for long and vertically aligned (VA) ZnO nanowires (NWs) were investigated. Typical ZnO NWs as a single crystal grown on indium tin oxide (ITO)-coated glass substrate were successfully synthesized. First, the conducted side of ITO–glass substrate was coated with zinc acetate dihydrate to form seed layer of ZnO nanocrystals. Double zone tube furnace connected to vacuum pump was used for ZnO growth process. Zn metal powder was positioned at the first zone at temperature 900 ° C. The ITO–glass substrate with pre-coated seed layer was then located in the second zone of tube furnace at growth temperature of 550 ° C. The growth of ZnO NWs was controlled under constant concentration of seed layer, while other parameters such as argon and oxygen flow rates, substrate position, time and oxygen flow rate were varied. The VA ZnO NWs were finally characterized by scanning electron microscopy, X-ray diffractometer and high-resolution transmission electron microscope equipped with energy-dispersive X-ray spectroscopy. The results show that long and VA ZnO NWs were single crystalline with hexagonal wurtzite structure. The ultimate length and average diameter of ZnO NWs were 10 μm and 50–100 nm, respectively. These were achieved under optimized CVD growth parameters. The mechanism of vertical growth model of ZnO NWs is also discussed.  相似文献   

17.
Vertical single-crystal ZnO nanowires with uniform diameter and uniform length were selectively grown on ZnO:Ga/glass templates at 600/spl deg/C by a self-catalyzed vapor-liquid-solid process without any metal catalyst. It was found that the ZnO nanowires are grown preferred oriented in the [002] direction with a small X-ray diffraction full-width half-maximum. Photoluminescence, field-emission scanning electron microscopy, and high-resolution transmission electron microscopy measurements also confirmed good crystal quality of our ZnO nanowires. Field emitters using these ZnO nanowires were also fabricated. It was found that threshold field of the fabricated field emitters was 14 V//spl mu/m. With an applied electric field of 24 V//spl mu/m, it was found that the emission current density was around 0.1 mA/cm/sup 2/.  相似文献   

18.
Temperature-dependant characteristics of heterojunction diode made by n-ZnO nanorods grown on p-silicon substrates has been characterized and demonstrated in this paper. ZnO nanorods were grown onto the silicon substrate via simple thermal evaporation process by using metallic zinc powder in the presence of oxygen at approximately 550 degrees C without the use of any metal catalysts or additives. The as-grown ZnO nanorods were characterized in terms of their structural and optical properties. The detailed structural studies by XRD, TEM, HRTEM and SAED revealed that the grown nanorods are well-crystalline with the wurtzite hexagonal phase and preferentially grown along the [0001] direction. The as-grown n-ZnO nanorods grown on p-Si substrate were used to fabricate p-n heterojunction diode. The fabricated p-n junction diode attained almost similar turn-on voltage of approximately 0.6 V. The values of turn-on voltage and least current are same with the variations of temperature (i.e., 27 degrees C, 70 degrees C and 130 degrees C).  相似文献   

19.
The zinc oxide (ZnO) and poly(3,4-ethylenedioxythiophene) bis-poly(ethyleneglycol) (PEDOT:PEG) films were deposited on p-Si substrate by sputter and spin coating methods, respectively. An organic/inorganic heterojunction diode having PEDOT:PEG/ZnO on p-Si substrate was fabricated. The barrier height (BH) and the ideality factor values for the device were found to be 0.82 ± 0.01 eV and 1.9 ± 0.01, respectively. It has been seen that the value of BH is significantly larger than those of conventional Au/p-Si metal–semiconductor contacts. The PEDOT:PEG/ZnO/p-Si heterostructure exhibits a non-ideal IV behavior with the ideality factor greater than unity that could be ascribed to the interfacial layer, interface states and series resistance. The modified Norde's function combined with conventional forward IV method was used to extract the parameters including the barrier height and series resistance. At the same time, the physical properties of ZnO and PEDOT:PEG films deposited by sputter and spin coating technique, respectively, were investigated at room temperature. The obtained results indicate that the electrical parameters of the diode are affected by structural properties of ZnO film and PEDOT:PEG organic film.  相似文献   

20.
Although ZnO and ZnS are abundant, stable, and environmentally benign, their band gap energies (3.44, 3.72 eV, respectively) are too large for optimal photovoltaic efficiency. By using band-corrected pseudopotential density functional theory calculations, we study how the band gap, optical absorption, and carrier localization can be controlled by forming quantum-well-like and nanowire-based heterostructures of ZnO/ZnS and ZnO/ZnTe. In the case of ZnO/ZnS core/shell nanowires, which can be synthesized using existing methods, we obtain a band gap of 2.07 eV, which corresponds to a Shockley-Quiesser efficiency limit of 23%. On the basis of these nanowire results, we propose that ZnO/ZnS core/shell nanowires can be used as photovoltaic devices with organic polymer semiconductors as p-channel contacts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号