首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Well-defined and -structured Cu/Cu2O and Ni/NiO composite nanoparticles have been prepared by physical-vapor deposition on vacuum-cleaved NaCl(001) single crystal facets. Epitaxial growth has been observed due to the close crystallographic matching of the respective cubic crystal lattices. Distinct particle morphologies have only been obtained for the Ni/NiO particles, comprising truncated half-octahedral, rhombohedral- and pentagonal-shaped outlines. Oxidation of the particles in the temperature range 473–673 K in both cases led to the formation of well-defined CuO and NiO particles with distinct morphologies. Whereas CuO possibly adopts its thermodynamical equilibrium shape, NiO formation is accompanied by entering a Kirkendall-like state, that is, a hollow core–shell structure is obtained. The difference in the formation of the oxides is also reflected by their stability under reducing conditions. CuO transforms back to a polycrystalline mixture of Cu metal, Cu2O and CuO after reduction in hydrogen at 673 K. In contrast, as expected from theoretical stability considerations, the formation of the hollow NiO structure is reversed upon annealing in hydrogen at 673 K and moreover results in the formation of a Ni-rich silicide structure Ni3Si2. The discussed systems present a convenient way to tackle and investigate various problems in nanotechnology or catalysis, including phase transformations, establishing structure/activity relationships or monitoring intermetallic particles, starting from well-defined and simple models.  相似文献   

2.
ZrO2/Ni composite coatings with different contents of ZrO2 particles were deposited on superalloy K17 substrate using high-speed jet electroplating process. The microhardness and microstructure of composite coatings were studied. The oxidation kinetic curves of uncoated and coated K17 alloys were obtained. The results indicated that ZrO2/Ni composite coatings exhibit higher microhardness than that of pure nickel coatings under the same high-speed jet electrodeposition conditions. ZrO2/Ni composite coatings exposure to air at 1000 °C for 5 h formed scale containing NiO and Cr2O3; after exposure to air at 1000 °C for 100 h the scale was comprised NiO, NiCr2O4, and Cr2O3. The formation of Cr2O3 scales on the ZrO2/Ni composite coating directly improved the oxidation resistance of superalloy K17.  相似文献   

3.
We report on the synthesis, morphology and magnetic properties of a novel NiO/SiO2 nanostructure. The NiO/SiO2 nanostructure was synthesized by a method based on the contribution of sol-gel and combustion processes. X-ray powder diffraction (XRPD) showed the formation of the nanocrystalline NiO phase. Transmission electron microscopy (TEM) and high-resolution TEM (HRTEM) revealed perfectly spherical NiO nanoparticles with diameter of about 5 nm. Amorphous silica shell around the NiO nanoparticles was also observed by HRTEM showing NiO/SiO2 core-shell nanostructure. Magnetic measurements show hysteretic behavior at 2 K with coercivity HC = 700 Oe, remanent magnetization Mr = 3.9 emu/g, saturation magnetization MS = 28.2 emu/g and huge magnetic moment mp ≈ 1300 μB of the nanoparticles.  相似文献   

4.
ZrO2/SiOx core/shell nanofibers with diameter ~ 50 nm were synthesized by the thermal oxidation of ZrSi2 substrates with gallium. The crystalline ZrO2 cores were grown with amorphous SiOx shells. It is proposed that the growth of crystalline ZrO2 core was guided by the prior supersaturation of Zr species in the molten gallium film, whereas the amorphous SiOx shell could be attributed to the deposition of SiO vapor on the surface of ZrO2 core. In addition, the ZrO2/SiOx core/shell nanofibers show a wide visible photoluminescence (PL) emission at 480 nm, which should originate from the SiOx shells.  相似文献   

5.
Different kinds of protective treatments based on sol-gel coatings have been designed and prepared. Final application of these coatings would be used for protection and preventive conservation of a wide variety of historical glasses from several times and provenance. Historical glasses show a superficial deterioration depending on the exhibition conditions submitted by the ancient objects since their origin.The coatings effectiveness was confirmed by means of accelerated ageing tests under simulated atmospheric polluted conditions by using SO2 as a pollutant and different kind of glasses as reference substrates.Coatings with compositions 100SiO2 and 10ZrO2·90SiO2 (mol%) proved to be highly protective when they were densified up to 250 and 400 °C for 1 h. Those coatings densified at lower temperature (for instance, 60 °C for 3 days) appeared partially cracked and detached after the ageing tests. For compositions 50ZrO2·50SiO2 and 100ZrO2 the major problem was concerned to the high surface reflectance provided by the zirconium oxide, which modifies very much the appearance of the substrate glasses.  相似文献   

6.
In order to conciliate dielectric and non-Ohmic properties of CaCu3Ti4O12 (CCTO) ceramics, NiO, SnO2, SiO2, and Al2O3 were added as sintering aids to promote the grain growth of CCTO ceramics. Microstructure, dielectric properties, and non-Ohmic behavior of the CCTO ceramics were investigated. Among them, NiO-modified CCTO exhibits good dielectric and non-Ohmic properties (ε = 69833, tanδ = 0.073, α = 3.66 and E B = 296.7 V/cm), due to NiO is also one of giant dielectric materials. Therefore, it is suitable for applying semiconductor circuits. The relationship between electrical current density (J) and electrical field (E) demonstrated that Schottky barrier should exist at grain boundaries. Non-linear coefficient α was directly proportional to the height of barrier. Depressing barrier width would improve significantly dielectric permittivity but decrease breakdown voltage.  相似文献   

7.
Composite materials based on PbO2 containing TiO2 or ZrO2 were prepared from electrolytes containing a suspension of TiO2 or ZrO2. The contents of foreign oxides in the composite depend on the electrolyte composition and conditions of deposition. When a dispersed phase is incorporated into the composite coating, the dimensions of lead dioxide crystals decrease to submicro- and nano-size. Physico-chemical properties of composite materials are mainly determined by their chemical composition.  相似文献   

8.
Microstructural characterization of pulsed laser deposited Al2O3/ZrO2 multilayers on Si (1 0 0) substrates at an optimized oxygen partial pressure of 3 × 10−2 mbar and at room temperature (298 K) has been carried out. A nanolaminate structure consisting of alternate layers of ZrO2 and Al2O3 with 40 bi-layers was fabricated at different zirconia layer thicknesses (20, 15 and 10 nm). The objective of the work is to study the effect of ZrO2 layer thickness on the stabilization of tetragonal ZrO2 phase for a constant Al2O3 layer thickness of 5 nm. The Al2O3/ZrO2 multilayer films were characterized using high temperature X-ray diffraction (HTXRD) in the temperature range 298–1473 K. The studies showed that the thickness of the zirconia layer has a profound influence on the crystallization temperature for the formation of tetragonal zirconia phase. The tetragonal phase content increased with the decrease of ZrO2 layer thickness. The cross-sectional transmission electron microscope (XTEM) investigations were carried out on a multilayer thin films deposited at room temperature. The XTEM studies showed the formation of uniform thickness layers with higher fraction of monoclinic and small fraction of tetragonal phases of zirconia and amorphous alumina.  相似文献   

9.
A three-dimensionally ordered macroporous (3DOM) material ZrO2 has been successfully synthesized by using ZrOC12·8H2O as precursor and polystyrene beads with diameters of 480 nm as template. The merit of this process is that ZrOC12·8H2O is cheaper and has a high melting point. SEM images show that precursor concentration has an important effect in fabricating 3DOM ZrO2. The sample prepared by using the precursor solution with a concentration of 1.6 M displays a well long-ranged ordered structure and uniform pore sizes. Precursor concentration between 1.3 M and 2.0 M is considered to be the most favorable to fabricate 3DOM ZrO2. XRD analysis indicates that the crystallinity of 3DOM ZrO2 is monoclinic phase. Nitrogen adsorption and desorption measurements at 77.4 K show detailed pore structures of 3DOM ZrO2.  相似文献   

10.
An analytical high-resolution electron microscopy study of Y2O3 and ZrO2 thin films, being relevant oxide model systems for a range of industrial applications, is reported. Both films were deposited on vacuum-cleaved NaCl(001) single crystal planes at varying substrate temperatures. A transition from an amorphous to a well-defined and -ordered structure, exhibiting almost single-crystalline ordering of either body-centered cubic Y2O3 or tetragonal ZrO2, both with uniform electronic structure, has been observed upon raising the substrate temperature from 300 to 573 K. Pronounced crystallographic relationships between the face-centered cubic NaCl structure and the structures of the deposited oxides have been held responsible for the observed epitaxial growth. In summary, the chosen preparation pathway represents an easy and reproducible method to yield well-defined oxide structures at surprisingly low substrate temperatures being at the same time promising model candidates for materials-related (e.g. solid-oxide fuel cell) research. With respect to solid-oxide fuel cell technology, monitoring carbon deposition and reactivity following high-temperature treatments in hydrocarbon-containing gas feeds or the use as templates or supports for model systems of realistic anode materials on metallic or bimetallic basis are envisioned application areas.  相似文献   

11.
Enhanced thermoelectric properties of NaCo2O4 by adding ZnO   总被引:1,自引:0,他引:1  
K. Park  J.H. Lee 《Materials Letters》2008,62(15):2366-2368
The primary phase present in the as-sintered Na(Co1 − xZnx)2O4 (0 ≤ x ≤ 0.1) bodies was the solid solution of the constituent oxides with a bronze-type layered structure. The electrical conductivity of the Na(Co1 − xZnx)2O4 samples significantly increased with an increase in ZnO content. The sign of the Seebeck coefficient for all samples was positive over the whole temperature range (723-1073 K), i.e., p-type conduction. The power factor of Na(Co0.95Zn0.05)2O4 showed an outstanding power factor (1.7 × 10 3Wm 1 K 2) at 1073 K. The power factor was above four times superior to that of ZnO-free NaCo2O4 (0.4 × 10 3Wm 1 K 2). This originates from an unusually large Seebeck coefficient (415 μVK 1) accompanied with high conductivity (127Ω 1 cm 1) at 1073 K.  相似文献   

12.
The effects of substrate temperature and selenization temperature on the structure, composition, electrical and optical properties of Cu2SnSe3 films were studied systematically. Cu2SnSe3 films deposited at various substrate temperatures (303–573 K) by the flash evaporation method are found to be non-stoichiometric. To compensate the selenium deficiency and obtain a single-phase, an annealing Cu2SnSe3 films deposited at 573 K was performed in selenium atmosphere. Cu2SnSe3 films deposited at a substrate temperature of 573 K and then selenized at 673 K were single phase and polycrystalline exhibiting monoclinic structure. The films showed p-type conductivity with a direct band gap of 0.84 eV.  相似文献   

13.
The effect of silicon dioxide (SiO2) on the hydrophilicity of the TiO2 thin film is investigated. SiO2 and TiO2 films were deposited on the glass by RF-magnetron sputtering. Heat-treatment for 15 h at 573 K on TiO2/glass and TiO2/SiO2/glass is carried out to make Na+-ion diffused from the glass to the TiO2 thin film, which results in no band-gap change but instead the enhanced crystallinity of the anatase phase-TiO2. This in turn leads to the improvement in hydrophilicity. Irrespective of the SiO2 interlayer, the anatase phase-TiO2 thin film with enhanced crystallinity shows outstanding super-hydrophilicity. Consequently, under the heat-treatment condition, the SiO2 interlayer played an important role in improving the crystallinity of the anatase phase-TiO2 rather than preventing Na+-ion diffusion.  相似文献   

14.
The Nd2O3 modified ZrO2 was synthesized using two methods of co-precipitation (Nd-ZrO2) and wet impregnation (Nd/ZrO2). The surface and bulk crystalline phases of Nd2O3 modified ZrO2 were investigated by using UV Raman spectroscopy, visible Raman spectroscopy, and X-ray diffraction (XRD). It is observed that the tetragonal phase in the surface region of Nd-ZrO2 was not effectively stabilized by Nd2O3, as Nd2O3 is mainly present in the bulk of Nd-ZrO2. However, in Nd/ZrO2, it is found that with the impregnation of 0.5 mol% Nd2O3 on ZrO2, the surface tetragonal phase of Nd/ZrO2 can be stabilized even after calcination at 700 °C. The UV Raman results indicate that a disordered structure, or intermediate structure, which is involved in the transition from the tetragonal to the cubic phase, is formed at the surface region of Nd/ZrO2. The formation of the aforementioned intermediate structure inhibits the phase transition from tetragonal to monoclinic in the surface region of Nd/ZrO2. Furthermore, it is observed that the mixed tetragonal and monoclinic phases in the surface region of ZrO2 which has been impregnated with Nd2O3 can also be stabilized after calcination at 700 °C. This work provides a simple method for controlling the surface phase of ZrO2 at high temperatures.  相似文献   

15.
Negative thermal expansion material ZrW2O8/Zr2WP2O12 composite was prepared by liquid phase sintering. The apparent density of ZrW2O8 without any sintering additive was about 3.7 g/cm3, corresponding to about 73% of its theoretical density. However, the relative density of the samples, sintered with more than 5 mol% P2O5 was about 90%. The identified phases were mainly ZrW2O8 with small amounts of WO3, ZrO2 and Zr2WP2O12 by XRD. The intensity of Zr2WP2O12 peaks increased with increasing P2O5 content. It was surmised that the melting of ZrO2-P2O5 resulted in liquid phase formation, which is then converted to Zr2WP2O12 on the final stage of sintering. Therefore, Zr2WP2O12 phase was observed at the gap between the ZrW2O8 grains and at the triple junctions. The ceramics sintered with 20 mol% P2O5 showed a negative thermal expansion coefficient of − 4.0 × 10− 6 °C− 1.  相似文献   

16.
Inner surface and the fine structure of the microchannel reactor using porous alumina support CuO/ZnO mixed with ZrO2 sol washcoat catalyst for autothermal reforming of methanol have been synthesized and characterized. Experimentally, catalyst slurries have been dried at 298 K for 5 h and then calcined at 623 K for 2 h to increase the surface area and specific pore structures of washcoat catalysts. Intensities of Cu content from XRD patterns indicate that Al2O3 assign with Cu(0) to from CuAl2O4. The EXAFS data reveals that the Cu species in washcoat have a Cu-O bonding with a bond distance of 1.96 Å and a coordination number of 2.95, respectively.  相似文献   

17.
Glass-ceramics containing (Hf,Zr)-zirconolite crystals (nominally CaHf1−x Zr x Ti2O7 with 0 ≤ x ≤ 1) were envisaged to immobilize minor actinides and plutonium. Such materials were prepared in this study by controlled crystallization of glasses belonging to the SiO2–Al2O3–CaO–Na2O–TiO2–HfO2–ZrO2–Nd2O3 system. Neodymium was used as trivalent actinides surrogate. The effect of total or partial substitution of ZrO2 by HfO2 (neutron poison for fission reactions) on glass crystallization in the bulk and near the surface is presented. It appeared that Hf/Zr substitution had not significant effect on nature, structure, and composition of crystals formed both on glass surface (titanite + anorthite) and in the bulk (zirconolite). This result can be explained by the close properties of Zr4+ and Hf4+ ions and by their similar structural role in glass structure. However, strong differences were observed between the nucleation rate IZ of zirconolite crystals in glasses containing only HfO2 and in glasses containing only ZrO2. Hf-zirconolite (CaHfTi2O7) crystals were shown to nucleate only very slowly in comparison with Zr-zirconolite (CaZrTi2O7) crystals. Composition changes - by increasing either HfO2 or Al2O3 concentration or by introducing ZrO2 in parent glass - were performed to increase IZ in hafnium-rich glasses. The proportion of Nd3+ ions incorporated in the zirconolite phase was estimated using ESR.  相似文献   

18.
P-type NiO thin films have been developed on high resistivity Si and SiO2 substrates by a pulsed laser deposition technique using an ArF? 193 nm excimer laser at deposition temperature of 300 °C and in 40 Pa partial oxygen pressure. Structures based on such NiO films as host material in the form of Au-NiO Schottky diodes have been subsequently developed under vacuum. In a different procedure, an n-SnO2 layer has been deposited by a CVD technique on a NiO film to produce a p/n heterojunction. The sensing properties of all above structures have been tested upon exposure to a H2 flow in air ambient gas at various operating temperature ranging from 30 to 180 °C. For the NiO films, the optimum temperature was about 150 °C exhibiting a sensitivity of 94%. After surface sensitization of NiO by Au the NiO films showed an H2 response at operating temperature of 30 °C. The sensitivity of p-NiO/n-SnO2 heterojunction devices was extracted from I-V measurements in air and under H2 flow mixed in air. In this case a dramatic increase of the sensitivity was achieved at operating temperature of 30 °C for a forward bias of 0,2 V.  相似文献   

19.
Phase transformation and morphology evolution of ZrO2/Al2O3/ZrO2 laminate induced by the post-deposition NH3 annealing at 480 °C were studied and the effect on the electrical property of the TiN/ZrO2/Al2O3/ZrO2/TiN capacitor module was evaluated in dynamic random access memory cell. Experimental results indicated N could indeed be incorporated into the dielectric laminate by the low-temperature NH3 annealing, resulting in tetragonal-to-cubic phase transformation and small crystallites in the ZrO2 layers. The C residue and Cl impurity in the ZrO2/Al2O3/ZrO2 laminate, which derived from the dielectric film formation and capping TiN layer deposition, respectively, could also be reduced by the nitridation process. As a result of the better surface morphology and less impurity content, lower dielectric leakage current and longer reliability lifetime were observed for the nitrided ZrO2/Al2O3/ZrO2 capacitor. This study demonstrates the low-temperature NH3 annealing on ZrO2/Al2O3/ZrO2 dielectric can be applicable to the metal-insulator-metal capacitor structure with nitride-based electrode, which brings advantages over mass production-wise property improvements and extends the practical applicability of the ZrO2/Al2O3/ZrO2 dielectric.  相似文献   

20.
Hysteresis behaviour in sandwich structure — zirconium oxide/chemical silicon oxide, annealed at temperature of 850 °C in oxygen ambient, was studied. Formation of thin ZrSixOy layer due to the high temperature annealing was found. Metal-insulator-semiconductor (MIS) capacitors using ZrO2/ZrSixOy/SiOx insulator were studied. High-frequency capacitance-voltage (HF C-V), current-voltage (I-V) and current-time (I-t) measurements were carried out on the Al/ZrO2/ZrSixOy/SiOx/Si capacitors.Two leakage current components were identified — tunneling current component at high electric fields and transient current component at low fields. The transient leakage currents are due to charge trapping phenomena. The measured I-t characteristics are related with charging/discharging and dielectric relaxation phenomena. A counter-clockwise HF C-V hysteresis, larger than 2 V at thickness of the stack structure of about 50 nm was observed.Metal-insulator-semiconductor field effect transistors (MISFETs) using ZrO2/ZrSixOy/SiOx-gate insulator were studied. P-channel MISFETs with aluminum gate electrode were fabricated on standard n-type silicon substrates. Due to charging/discharging phenomena in the gate dielectric the transistors can be switched between On- and Off-state with the polarity of applied stress voltage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号