首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fast response detection of H2S by CuO-doped SnO2 films prepared was prepared by a simple two-step process: electrodeposition from aqueous solutions of SnCl2 and CuCl2, and oxidization at 600 °C. The phase constitution and morphology of the CuO-doped SnO2 films were characterized by X-ray diffraction and scanning electron microscopy. In all cases, a polycrystalline porous film of SnO2 was the product, with the CuO deposited on the individual SnO2 particles. Two types of CuO-doped SnO2 films with different microstructures were obtained via control of oxidation time: nanosized CuO dotted island doped SnO2 and ultra-uniform, porous, and thin CuO film coated SnO2. The sensor response of the CuO doped SnO2 films to H2S gas at 50–300 ppm was investigated within the temperature range of 25–125 °C. Both of the CuO-doped SnO2 films show fast response and recovery properties. The response time of the ultra-uniform, porous, and thin CuO coated SnO2 to H2S gas at 50 ppm was 34 s at 100 °C, and its corresponding recovery time was about 1/3 of the response time.  相似文献   

2.
An effort has been made to develop a new kind of SnO2–CuO gas sensor which could detect an extremely small amount of H2S gas at relatively low working temperature. The sensor nanomaterials were prepared from SnO2 hollow spheres (synthesized by employing carbon microspheres as temples) and Cu precursor by dipping method. The composition and structural characteristics of the as-prepared CuO-doped SnO2 hollow spheres were studied by X-ray photoelectron spectroscopy, X-ray powder diffraction, scanning electron microscopy, and transmission electron microscopy. Gas-sensing properties of CuO-doped SnO2 hollow sphere were also investigated. It was found that the sensor showed good selectivity and high sensitivity to H2S gas. A ppb level detection limit was obtained with the sensor at the relatively low temperature of 35 °C. Such good performances are probably attributed to the hollow sphere nanostructures. Our results imply that materials with hollow sphere nanostructures are promising candidates for high-performance gas sensors.  相似文献   

3.
This paper deals with the synthesis of tin oxide (SnO2) nano-powders by a solid-state reaction technique. The synthesized powders have been characterized by simultaneous thermo gravimetric and differential thermal analysis (TG–DTA) and X-ray diffraction (XRD) techniques. Suitable calcination temperature is established by XRD and TG–DTA analysis. Thick film sensors have been developed from as-prepared undoped and palladium (Pd) doped (0.5 and 1 wt%) SnO2 powders using screen printing technology for the detection of various pollutant gases such as, hydrogen (H2), carbon monoxide (CO), liquefied petroleum gas (LPG) and methane (CH4). The surface of the thick film sensor has been characterized by field emission scanning electron microscopy (FESEM). The sensing characteristics of thick films have been studied from the aspect of crystallite size of sensing material and microstructure of the thick film surface. It is found that SnO2 doped with 1 % Pd exhibits the maximum sensitivity (79 %) towards CO gas along with fast response/recovery time (80 s, 197 s) and almost insensitive for H2, LPG and CH4.  相似文献   

4.
In the present work, solid-state reaction and sol–gel route derived pure tin oxide (SnO2) powders have been used to develop the palladium (Pd)-doped SnO2 thick film sensors for detection of liquefied petroleum gas (LPG). Efforts have been made to study the gas sensing characteristics i.e., sensor response, response/recovery time and repeatability of the thick film sensors. The response of the sensors has been investigated at different operating temperatures from 200 to 350 °C in order to optimise the operating temperature which yields the maximum response upon exposure to fixed concentration of LPG. The optimum temperature is kept constant to facilitate the gas sensing characteristics as a function of the various concentration (0.25–5 vol%) of LPG. The structural and microstructural properties of Pd-doped SnO2 powder and developed sensors have been studied by performing X-ray diffraction and field emission electron microscopy measurements. The improvement in the response along with better response and recovery time have been correlated to the reduction in crystallite size of SnO2 powder and morphology of printed sensor in thick film form. It is found that the thick film sensor developed by using sol–gel route derived SnO2 powder with an optimum doping of 1 wt% Pd is extremely sensitive (86 %) to LPG at 350 °C.  相似文献   

5.
Pure and cerium (Ce) doped tin oxide (SnO2) thin films are prepared on glass substrates by jet nebulizer spray pyrolysis technique at 450 °C. The synthesized films are characterized by X-ray diffraction (XRD), scanning electron microscopy, energy dispersive analysis X-ray, ultra violet visible spectrometer (UV–Vis) and stylus profilometer. Crystalline structure, crystallite size, lattice parameters, texture coefficient and stacking fault of the SnO2 thin films have been determined using X-ray diffractometer. The XRD results indicate that the films are grown with (110) plane preferred orientation. The surface morphology, elemental analysis and film thickness of the SnO2 films are analyzed and discussed. Optical band gap energy are calculated with transmittance data obtained from UV–Visible spectra. Optical characterization reveals that the band gap energy is found decreased from 3.49 to 2.68 eV. Pure and Ce doped SnO2 thin film gas sensors are fabricated and their gas sensing properties are tested for various gases maintained at different temperature between 150 and 250 °C. The 10 wt% Ce doped SnO2 sensor shows good selectivity towards ethanol (at operating temperature 250 °C). The influence of Ce concentration and operating temperature on the sensor performance is discussed. The better sensing ability for ethanol is observed compared with methanol, acetone, ammonia, and 2-methoxy ethanol gases.  相似文献   

6.
SnO2 nanoparticles loaded with 0.2–2 wt% Pt have successfully been synthesized in a single step by flame spray pyrolysis (FSP) and investigated for gas sensing towards hydrogen (H2). According to characterization results by X-ray diffraction, nitrogen adsorption, scanning/high resolution-transmission electron microscopy and analyses based on Hume-Rothery rules using atomic radii, crystal structure, electronegativities, and valency/oxidation states of Pt and Sn, it is conclusive that Pt is not solute in SnO2 crystal but forms nanoparticles loaded on SnO2 surface. H2 gas sensing was studied at 200–10,000 ppm and 150–350 °C in dry air. It was found that H2 response was enhanced by more than one order of magnitude with a small Pt loading concentration of 0.2 wt% but further increase of Pt loading amount resulted in deteriorated H2-sensing performance. The optimal SnO2 sensing film (0.2 wt% Pt-loaded SnO2, 20 μm in thickness) showed an optimum H2 response of ∼150.2 at 10,000 ppm and very short response time in a few seconds at a low optimal operating temperature of 200 °C. In addition, the response tended to increase linearly and the response times decreased drastically with increasing H2 concentration. Moreover, the selectivity against carbon monoxide (CO) and acetylene (C2H2) gases was also found to be considerably improved with the small amount of Pt loading. The H2 response dependence on Pt concentration can be explained based on the spillover mechanism, which is highly effective only when Pt catalyst is well-dispersed at the low Pt loading concentration of 0.2 wt%.  相似文献   

7.
The nanocomposite oxide (0.2TiO2-0.8SnO2) doped with Cd2+ powder have been prepared and characterized by XRD and their gas-sensing sensitivity were characterized using gas sensing measurement. Experimental results show that, bicomponent nano anatase TiO2 and rutile SnO2 particulate thick film doped with Cd2+ behaves with good sensitivity to formaldehyde gas of 200 ppm in the air, and the optimum sensing temperature was reduced from 360 °C to 320 °C compared with the undoped Cd2+ thick film. The gas sensing thick films doped with Cd2+ also show good selectivity to formaldehyde among benzene, toluene, xylene and ammonia as disturbed gas and could be effectively used as an indoor formaldehyde sensor.  相似文献   

8.
The present investigation deals with the fabrication of liquid petroleum gas (LPG) sensor materials based on semiconducting oxide SnO2. The gas sensor materials have been prepared by conventional solid-state route. The effect of Pb incorporation, operating temperature, morphology, and sensitivity is discussed using the results of X-ray diffraction (XRD), along with sensing performance. Out of various sensor compositions, Pb doped SnO2 sintered at 1000 °C for 2 h has shown high sensitivity towards LPG at an operating temperature of 150 °C. Different characterization techniques have been employed, such as surface area analyzer, X-ray diffraction (XRD), to study the formation of SnO2, surface area and crystallite size, respectively. The results suggested the possibility of utilizing the sensor element for the detection of LPG.  相似文献   

9.
In this paper nanosized BaTiO3 thick films based gas sensor has been fabricated for liquid petroleum gas (LPG). Doping with different concentrations of metal oxides influenced the sensitivity of BaTiO3 thick films for LPG sensor. We present the characterization of both their structural properties by means of X-ray powder diffraction (XRD) and the electrical characteristics by using gas-sensing properties. X-ray powder diffraction analyses revealed the persistence of cubic phase with grain growth 65 nm. The LPG-sensing properties of BaTiO3 thick films doped with CuO and CdO are investigated. It was found that 10 wt.% CuO: 10 wt.% CdO doped BaTiO3 based LPG sensor shows better sensitivity and selectivity at an operating temperature 250 °C which is an important commercial range for LPG alarm development. Incorporation of 0.3 wt.% Pd doped CuO:CdO:BaTiO3 element shows maximum sensitivity with high cross selectivity to the other gases including CO, H2 and H2S at an operating temperature 225 °C for low concentrations of LPG sensor.  相似文献   

10.
In the present paper we have synthesized pristine and Sr doped SnO2 in order to prepare a selective ethanol sensor with rapid response–recovery time and good repeatability. Pristine as well as Sr (2, 4 and 6 mol%) doped SnO2 nanostructured powder was synthesized by using a facile co-precipitation method. The samples were characterized by TG–DTA, XRD, HR-TEM, SAED, FEG-SEM, SEM–EDAX, XPS, UV–Vis and FTIR spectroscopy techniques. The gas response performance of sensor towards ethanol, acetone, liquid petroleum gas and ammonia has been carried out. The results demonstrate that Sr doping in SnO2 systematically decreases crystallite size, increases the porosity and hence enhances the gas response properties of pristine SnO2 viz. lower operating temperature, higher ethanol response and better selectivity towards ethanol. The response and recovery time for 4 mol% Sr doped SnO2 thick film sensor at the operating temperature of 300 °C were 2 and 7 s, respectively.  相似文献   

11.
SnO2−x films were prepared by reactive thermal and e-beam evaporation of Sn on alumina substrates and by post deposition thermal treatment. X-ray diffraction measurements found that films are tin dioxide (SnO2) phase with small amounts of SnO phase. The surface conductivity of films was measured in air and in presence of H2S, H2 and C2H5OH vapors at four sensor operating temperatures of 433-493 K. The resistance of SnO2−x films decreases on exposure to H2S but shows no change with hydrogen and ethanol. H2S response decreases with rise in sensor temperature while both response and recovery times improve. H2S signal enhances with increase in resistivity of SnO2−x coatings. Our experiments conclude that increase in film conductance is due to chemical reaction between H2S and SnO2−x surface and there is little or no role of interaction of gas molecules with surface adsorbed charged oxygen species.  相似文献   

12.
Pure SnO2 films and Ag-, Cu-, Pt-, and Pd-doped SnO2 films were investigated for H2S sensing properties. SnO2 films were deposited by DC magnetron sputtering at various substrate temperatures and discharge gas pressures. As the discharge gas pressure increased and the substrate temperature decreased, the film became porous. Doping with Cu or Ag film improved the sensitivity, and the highest sensitivity was obtained in the porous SnO2 film coated with an Ag film 16 nm thick. According to the X-ray diffraction (XRD) pattern, Ag deposited on SnO2 film transformed to Ag2S upon exposure to H2S. When the Ag-doped film sensor was operated at a low temperature, the sensitivity was extremely high, but the recovery was insufficient. By increasing the operation temperature, the recovery was improved but the sensitivity decreased.  相似文献   

13.

The present study focuses on pure and antimony (Sb)-doped tin oxide thin film and its influence on their structural, optical, and electrical properties. Both undoped and Sb-doped SnO2 thin films have been grown by using simple, inexpensive pyrolysis spray technique. The deposition temperature was optimized to 450 °C. X-ray diffractions pattern have revealed that the films are polycrystalline and have tetragonal rutile-type crystal structure. Undoped SnO2 films grow along (110) preferred orientation, while the Sb-doped SnO2 films grow along (200) direction. The size of Sb-doped tin oxide crystals changes from 26.3 to 58.0 nm when dopant concentration is changed from 5 to 25 wt%. The transmission spectra revealed that all the samples are transparent in the visible region, and the optical bandgap varies between 3.92 and 3.98 eV. SEM analysis shows that the surface morphology and grain size are affected by the doping rate. All the films exhibit a high transmittance in the visible region and show a sharp fundamental absorption edge at about 0.38–0.40 nm. The maximum electrical conductivity of 362.5 S/cm was obtained for the film doped with 5 wt% Sb. However, the carrier concentration is increased from 0.708?×?1018 to 4.058?×?1020 cm3. The electrical study reveals that the films have n-type electrical conductivity and depend on Sb concentration. We observed a decrease in sheet resistance and resistivity with the increase in Sb dopant concentration. For the dopant concentration of 5 wt% of Sb in SnO2, the Rs and ρ were found minimum with the values of 88.55 (Ω cm?2) and 2.75 (Ω cm), respectively. We observed an increase in carrier concentration and a decrease in mobility with the addition of Sb up to 25 wt%. The highest figure of merit values 2.5?×?10–3 Ω?1 is obtained for the 5wt% Sb, which may be considered potential materials for solar cells' transparent windows.

  相似文献   

14.
M. Kormunda  J. Pavlik 《Vacuum》2011,85(9):871-874
The SnO2 gas sensors and catalytic surfaces are produced by different techniques with a wide range of dopants improving their selectivity and sensitivities. The surface topology is important because the active surface area can be enlarged dramatically by employing nanostructures. Many reported techniques for the tin oxide nanostructures preparation require fine powders or liquid precursors together with high temperatures above 500 °C. But the nanostructures can be formed by the RF off-axis magnetron sputtering technique at room temperature from a bulk target. The single target co-sputtering of SnO2 target with Fe inset was used to deposit SnO2 film doped by iron.The 400 nm diameter pillars were successfully deposited in controllable density on polished Si substrates at low pressure 0.3 Pa of argon and oxygen gas mixture. The pillars were not formatted at the beginning of deposition process but certain SnO2 film was required. The surface around the pillars was flat without any significant texture.The iron in form of the iron oxide was found to be the doping in deposited coatings when the stannic oxide was sub-stoichiometry with oxygen vacancies.  相似文献   

15.
In this work we present structural studies made on SnO2 deposited on macroporous silicon structures. The porous silicon substrates were prepared by anodization of p-type silicon wafers. The SnO2 doped layers were synthesized by the sol-gel method from SnCl4·5H2O-ethanolic precursor, where the effect of fluorine doping level on structural properties was investigated. The fundamental structural parameters of tin oxide such as the lattice parameter and the crystallite size were studied in correlation with the dopant concentration. In addition, the effect of fluorine incorporation into the structure of tin oxide was analyzed on the basis of theoretical calculations that take into account the structural factor. The results obtained indicate that incorporation of fluorine occurs only at substitutional sites for SnO2 deposited on porous silicon.  相似文献   

16.
Antimony doped tin oxide SnO2: Sb thin films have been fabricated by atmospheric pressure chemical vapour deposition at substrate temperature varying between 350 °C and 420 °C in a horizontal reactor, from a mixture of hydrated SnCl2, SbCl3 and O2 gas. The films were grown on glass substrates and onto polished and porous n-type silicon. Doped films fabricated with various Sb (Sb/Sn %) contents ranging from undoped 0% to 4% were characterised employing different optical characterisation techniques, like X-ray diffraction, transmittance and reflectance in the wavelength range of 300 to 2500 nm and ellipsometry. The films exhibit the usual cassiterite diffraction pattern with high crystalline structure. Examination of the surface by scanning electron microscopy (SEM) showed that the films are textured made up of many pyramidal crystallites with nanofaceted surfaces, indicating highly stabilised material. The presence of inverted pyramids indicates that the crystallites grown by coalescence. The surface morphology was found to be independent on the kind of the substrate. From X-Ray spectra and SEM observations we get the texture the lattice constant and the grain size. The optical results provide information on film thickness, optical parameters and transmittance upon antimony concentration. The microstructure of the films, the grain growth topics (nucleation, coalescence…) depend strongly on deposition conditions and doping concentration. The observed variations of both the resistivity ρ and transmittance T are correlated to antimony atoms concentration which induced variation in the microstructure and in the size of SnO2 nanograins (typically 20-40 nm). In this work, we have determined the feasibility of incorporating the correct amount of Sb atoms in tin oxide film by means of resistivity and transmission. SEM observations showed that the substrate do not affect the morphology.  相似文献   

17.
In this study, the electrical and optical properties of Zn doped tin oxide films prepared using sol-gel spin coating process have been investigated. The SnO2 : Zn multi-coating films were deposited at optimum deposition conditions using a hydroalcoholic solution consisting of stannous chloride and zinc chloride. Films with Zn doping levels from 0–10 wt% in solution are developed. The results of electrical measurements indicate that the sheet resistance of the deposited films increases with increasing Zn doping concentration and several superimposed coatings are necessary to reach expected low sheet resistance. Films with three coatings show minimum sheet resistance of 1–479 kΩ/ in the case of undoped SnO2 and 77 kΩ/ for 5 wt% Zn doped SnO2 when coated on glass substrate. In the case of single layer SnO2 film, absorption edge is 3.57 eV and when doped with Zn absorption edge shifts towards lower energies (longer wavelengths). The absorption edge lies in the range of 3.489-3.557 eV depending upon the Zn doping concentration. The direct and indirect transitions and their dependence on dopant concentration and number of coatings are presented.  相似文献   

18.
The results of doping influence on thermal stability of the SnO2 film morphology are presented in this article. The SnO2 films doped by Fe, Cu, Ni, Co (16 at.%) were deposited by spray pyrolysis from 0.2 M SnCl4–water solution at Tpyr 350–450 °C. The annealing at 850–1030 °C was carried out in the atmosphere of the air. The change of such parameters as film morphology, the grain size, texture and the intensity of X-ray diffraction (XRD) peaks have been controlled. For structural analysis of tested films we have been using X-ray diffraction, Scanning Electron Microscopy (SEM), and Atomic Force Microscopy (AFM) techniques. It was established that the doping does not improve thermal stability of both film morphology and the grain size. It was made a conclusion that the increased contents of the fine dispersion phase of tin oxide in the doped metal oxide films, and the coalescence of this phase during thermal treatment are the main factors, responsible for observed changes in the morphology of the doped SnO2 films.  相似文献   

19.
Silver doped tin oxide (SnO2:Ag) nanopowders were synthesized by a simple soft chemical route with 0, 5, 10 and 15 wt% concentrations of Ag. The structural, morphological, optical, photoluminescence and photocatalytic properties of the synthesized samples were studied and the results obtained are reported in this paper. XRD studies confirm the polycrystalline nature of the synthesized samples. The undoped and doped samples exhibit a strong (1 0 1) preferential growth. Decreased crystallite size is observed with Ag doping. Nanosized grains were observed for the doped samples. Peak related to Sn–O–Sn lattice vibration is observed for both the undoped and doped samples in the FTIR spectra. Peaks related to oxygen vacancies were observed at 362 and 499 nm for all the samples in the PL spectra. Enhanced photocatalytic activity was observed for the doped samples and the SnO2:Ag nanopowder with 10 wt% Ag doping concentration exhibited maximum photodegradation efficiency against the degradation of methyl orange dye.  相似文献   

20.
Tin oxide nano-electrodes were fabricated on fluorine doped tin oxide (FTO) substrates at room temperature. SnO2 was crystallized from ions in aqueous solutions to cover the substrates uniformly. They were single phase of SnO2 nano-crystals and about 5–10 nm in size. The surface coatings changed the surface morphology of FTO substrates to increase roughness and surface area. FTO substrates covered with tin oxide had the same transparency as bare FTO substrates in the range from 200 nm to 850 nm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号