首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We report a surfactant-free chemical solution route for synthesizing one-dimensional porous SnO2 helical nanotubes templated by helical carbon nanotubes and two-dimensional SnO2 sheets templated by graphite sheets. Transmission electron microscopy, X-ray diffraction, cyclic voltammetry, and galvanostatic discharge–charge analysis are used to characterize the SnO2 samples. The unique nanostructure and morphology make them promising anode materials for lithium-ion batteries. Both the SnO2 with the tubular structure and the sheet structure shows small initial irreversible capacity loss of 3.2% and 2.2%, respectively. The SnO2 helical nanotubes show a specific discharge capacity of above 800 mAh g−1 after 10 charge and discharge cycles, exceeding the theoretical capacity of 781 mAh g−1 for SnO2. The nanotubes remain a specific discharge capacity of 439 mAh g−1 after 30 cycles, which is better than that of SnO2 sheets (323 mAh g−1).  相似文献   

2.
Zr-MCM-41 materials were synthesized by the hydrothermal method in the presence of ZrOCl2 and NaCl. The characterization results showed that Zr was highly dispersed in the tetrahedral environment of silica framework. In the synthesis process, the self-generated acidity by the hydrolysis of ZrOCl2 acted as the catalyst for TEOS hydrolysis. In order to form the ordered structure of Zr-MCM-41, the addition of NaCl in the synthesis gel was essential and the optimum NaCl/Si molar ratio was 1.0. The ordering of Zr-MCM-41 was also influenced by the content of Zr, which decreased gradually with the increase of Zr content.  相似文献   

3.
A possibility of synthesizing the SnO2–Au nanocomposite by the successive ionic layer deposition (SILD) method is demonstrated in this article. It is shown that as a result of successive treatments in solutions of Sn(OH)xFyClz and HAuCl4 the SnO2–Au nanocomposite with a Sn/Au ratio varying from 1:1 to 6:1 can be formed on the surface of substrates. It is found that the value of this ratio depends on the concentration of F ions in solution. The gold in the indicated composite is in the metallic state. The growth of the SnO2–Au composite takes place through the formation of 3-D precipitates, which form a continuous film after 13 deposition cycles. As a result, a layer with averaged thickness of up to 20 nm is formed on the surface. Nanocomposite films, even after treatment at an annealing temperature Tan ∼ 600 °C, have finely dispersed structure. The size of the Au clusters incorporated in the SnO2 matrix is in the range from 3 to 15 nm. Gas sensing characteristics of SnO2 films modified by SnO2–Au nanocomposites are discussed as well. It is shown that surface modification by SnO2–Au nanocomposites can be used for improving operating characteristics of conductometric SnO2-based gas sensors.  相似文献   

4.
In the last few years, magnetic nanoparticles have turned out to offer great potential in biomedical applications. This study was focused on MnxFe1−xFe2O4 ferrite particles series with x ranging between 0 and 1. Manganese ferrites nanoparticles were prepared by co-precipitation method that allows a good control of their shape and size. The X-ray analysis indicated a crystallite size of the particles in the nanometers domain increasing with the Mn cation substitution level. Average grain size of the nanoparticles calculated from transmission electron microscopy images of the samples was ranging between 10.5 and 19.0 nm suggesting that the majority of the nanoparticles are monodomain. The hydrodynamic diameter of the water dispersed nanoparticles measured by dynamic light scattering was ranging between 60 and 105 nm proving the tendency of agglomeration. Vibrating sample magnetometer measurement confirmed the superparamagnetic behavior of the powders. The magnetic properties were analyzed considering the proposed cation distribution and Yafet–Kittel angles, while the specific absorption rate (SAR) measurement at 1.95 MHz frequency confirmed the influence of substitution level on magnetic properties and thermal transfer rate. From our results the highest value for specific absorption rate was 148.4 W g−1 for Mn2Fe2O4 at an AC field of 4500 A m−1.  相似文献   

5.
Modifications and pelletization of limestone were investigated in order to improve the utilization of CaO-based materials for different catalytic reactions and environmental applications. Attempts to purify the limestone by ion-exchange with CaCl2 solution did not result in significant removal of impurities. On the other hand, acetification with 10 vol.% acetic acid enhanced pore surface area and pore volume of the sorbent by 42% and 3-fold, respectively. The acetification was found to widen small pores, and thus create a beneficial pore size distribution with more pores in the range of 25–100 nm. In order to utilize such powdered materials in fluidized beds, pelletization is the next step. Unfortunately, pelletization results suggested that natural kaolin is an unsuitable binder for preparing CaO-based pellets due to its negative impact on pellet morphology. By contrast, Al(OH)3 binder obtained from kaolin leaching had a strong positive effect on the porous texture of the pellets, demonstrated by pore surface area and volume of 22.48 m2 g−1 and 0.051 cm3 g−1 for 1 mm pellets with CaO/binder ratio of 5.5, compared to 10.92 m2 g−1 and 0.039 cm3 g−1 for natural materials. The enhancement in pellet morphology is mainly attributed to transformation of Al(OH)3 to the highly porous Al2O3 at high temperatures. Pellets synthesized from limestone modified with 10 vol.% acetic acid with Al(OH)3 binder (ratio of 5.5) exhibited high pore surface area and volume, represented by 1.3-fold and 44% increase over those for natural limestone. It was concluded that the combination of acetified limestone with Al(OH)3 binder is a promising approach for synthesis of CaO-based pellets with enhanced morphology.  相似文献   

6.
Nanorod-shaped LiMn1.5Ni0.5O4 cathode powders were synthesized by a co-precipitation method with oxalic acid. Their structures and electrochemical properties were characterized by SEM, XRD and galvanostatic charge-discharge tests. The resulting nanorod-shaped LiMn1.5Ni0.5O4 cathode active materials delivered a specific discharge capacity of 126 mAh g−1 at 0.1 C rate. These active materials exhibited better capacity retention and higher rate performance than those of LiMn1.5Ni0.5O4 cathode powders with irregular morphology.  相似文献   

7.
Janus particles possess promising performances. It is challenging to develop new methods to control composition and microstructure of the particles. In this report, we describe a general template synthesis of several non-spherical Janus composite particles by the template of dumbbell-like silica/polystyrene (PS) Janus particles. Both PS and silica can be modified to introduce desired functional groups respectively, or induce crystallization of other materials on the particle surface. Especially, by favorable growth of materials within the sulfonated PS gel forming the core–shell structure at the polymer part, several new Janus hollow particles are obtained after removal of the PS core.  相似文献   

8.
Highly ordered mesoporous materials were successfully synthesized by using the iron ore tailings as the silica source and n-hexadecyltrimethyl ammonium bromide as the template. The samples were detail characterized by powder X-ray diffraction, scanning electron microscope, high-resolution transmission electron microscopy and N2 physisorption. The as-synthesized materials had high surface area of 527 m2 g−1 and the mean pore diameter of 2.65 nm with a well-ordered two-dimensional hexagonal structure. It is feasible to prepare mesoporous MCM-41 materials using the iron ore tailings as precursor.  相似文献   

9.
Body-centered cubic (bcc) phase iron nanocrystals with granular, rod-like and flaky shapes were prepared through a simple surfactant-controlled chemical reduction route. In view of extra stability and enhanced manipulative ability, thus-prepared iron nanoparticles were morphology-retained modified with a thin silica shell through a Stöber process. A serial of techniques such as X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), Fourier transform infrared spectrometer (FTIR), X-ray photoelectron spectrometer (XPS), thermogravimetry (TG), vibrating sample magnetometer (VSM) and scalar network analyzer (SNA) were used to characterize the iron particles before and after silica coating. Results showed that the surface silica coating could effectively improve the oxidation resistance and microwave absorption performance of iron particles, while slightly influenced their magnetic properties. Furthermore, the flaky Fe@SiO2 nanocapsules particles exhibited better microwave absorption performance than that of the granular and rod-like counterparts, which could be ascribed to the shape effect.  相似文献   

10.
P25/graphene nanocomposites were successful synthesized in a water-ethanol solvent under hydrothermal conditions. During the process of the reduction of GO into graphene (GR), the P25 nanoparticles were decorated on graphene sheets simultaneously. Moreover, the GR content in the as-synthesized nanocomposites can be easily adjusted by changing the dosage of P25. The interesting P25/GR nanocomposites were found to be a promising anode material for lithium-ion batteries and showed significantly enhanced Li-ion insertion/extraction performance. The optimal weight percentage of GR was found to be 29.9%, which resulted in a high capacity of 282.8 mAh g−1 after 50 cycles at a current rate of 0.5 C. The improved capacity may be attributed to the synergetic effect between graphene sheets and P25 nanoparticles.  相似文献   

11.
Ba1−xLaxTiO3/multi-walled carbon nanotube (MWCNT) nanocomposites with different concentrations of La3+ doping, were synthesized by a solvothermal process. The prepared nanocomposites had a hybrid microstructure in which Ba1−xLaxTiO3 nanocrystals with diameter of 10–30 nm were firmly immobilized on the MWCNTs sidewalls. Electromagnetic (EM) wave absorption properties of La-doped BaTiO3/MWCNT nanocomposites were investigated in the 7.5–18 GHz frequency range for an absorber thickness of 1 mm. The reflection loss (RL) calculated from the EM parameters of the samples, moved to low frequencies with increasing La3+ doping. The widest absorption bandwidth, with the lowest frequency range, was observed in a nanocomposite doped with 1.5 at% La3+. An RL exceeding −5 dB for this sample was obtained in the frequencies ranging from 9.6 to 16.3 GHz, with the optimal RL of −17.4 dB at 10.9 GHz, due to enhanced interfacial polarization resulting in developed εrεr. In addition, the RL for the sample shifted to the low frequency region and the peaks became sharper in the 2–18 GHz frequency range with increasing absorber thickness. For BaTiO3/MWCNT nanocomposites, La3+ doping can greatly improve the EM wave absorbing ability in a thin absorber thickness and the donor-doped nanocomposites show promise for application in EM wave shielding materials with broad absorption bandwidths.  相似文献   

12.
β-Co(OH)2 hollow-ware stacked nanosheets have been synthesized at low temperature (60 °C) through a simple surfactant-free technique. The factors on the formation of the hollowware-like stacked nanosheets have been studied and a possible formation mechanism is proposed. Thermally stable porous Co3O4 with the same morphology was prepared by thermal decomposition of the as-prepared Co(OH)2. The catalytic properties of the porous Co3O4 and Au/Co3O4 are reported.  相似文献   

13.
Au nanoparticles supported on highly uniform one-dimensional ZnO nanowires (Au/ZnO hybrids) have been successfully fabricated through a simple wet chemical method, which were first used for photodegradation of gas-phase benzene. Compared with bare ZnO nanowires, the as-prepared Au/ZnO hybrids were found to possess higher photocatalytic activity for degradation of benzene under UV and visible light (degradation efficiencies reach about 56.0% and 33.7% after 24 h under UV and visible light irradiation, respectively). Depending on excitation happening on ZnO semiconductor or on the surface plasmon band of Au, the efficiency and operating mechanism are different. Under UV light irradiation, Au nanoparticles serve as an electron buffer and ZnO nanowires act as the reactive sites for benzene degradation. When visible light is used as the light irradiation source, Au nanoparticles act as the light harvesters and photocatalytic sites alongside of charge-transfer process, simultaneously.  相似文献   

14.
Soluble anionic carbonate complexes of Zr(IV) are produced by addition of Zr(IV) salts to the excess of an alkali metal or ammonium carbonate. The solutions are metastable at pH 7-10 and can be used as the precursors for the synthesis of new materials, as illustrated by the example of the surfactant containing mesophase with a wormhole-like structure, prepared by means of reaction with cetyltrimethylammonium bromide.  相似文献   

15.
Cu2S film that directly grows on porous Cu foam has been fabricated by a novel dry thermal sulfuration approach. The crystalline structure and morphological observation of the as-synthesized Cu2S/Cu were characterized by X-Ray diffraction (XRD) and field-emission scanning electron microscopy (FE-SEM), respectively. The electrochemical performance of the Cu2S/Cu as cathode for Li-ion battery was studied by charge/discharge test and cyclic voltammetry (CV) measurement. The results indicate that the Cu2S/Cu cathode exhibits excellent cycle stability and rate capability. When applying a charge/discharge rate of 0.25 C, it delivers initial discharge and charge capacity of 0.74 and 0.40 mAh cm−2, respectively. After 100 cycles, the discharge and charge capacity are both 0.41 mAh cm−2, showing no obvious capacity attenuation. Besides, even after 140 cycles at various rates from 0.3 C to 60 C, the discharge capacity of the Cu2S/Cu cathode can restore 97.8% when lowering the charge/discharge rate to 0.3 C.  相似文献   

16.
Birnessite-type MnO2/activated carbon nanocomposites have been synthesized by directly reducing KMnO4 with activated carbon in an aqueous solution. It is found that the morphologies of MnO2 grown on activated carbon can be tailored by varying the reaction ratio of activated carbon and KMnO4. An asymmetric supercapacitor with high energy density was fabricated by using MnO2/activated carbon (MnO2/AC) nanocomposite as positive electrode and activated carbon as negative electrode in 1 M Na2SO4 aqueous electrolyte. The asymmetric supercapacitor can be cycled reversibly in the cell voltage of 0–2 V, and delivers a specific capacitance of 50.6 F g−1 and a maximum energy density of 28.1 Wh kg−1 (based on the total mass of active electrode materials of 9.4 mg), which is much higher than that of MnO2/AC symmetric supercapacitor (9.7 Wh kg−1).  相似文献   

17.
We report a simple method for shape-controlled synthesis of iron oxide spinels such as magnetite (Fe3O4) and maghemite (γ-Fe2O3) nanostructures using a thermoresponsive polymer poly(vinyl methyl ether) (PVME) by the alkaline hydrolysis of iron salt at low temperature (20 °C). Microscopic analysis confirmed the formation of needle- and flower-shaped iron oxide nanostructures depending on reaction conditions. High-resolution transmission electron microscopic analysis of the needle- and flower-shaped nanostructures as well as their corresponding selected area electron diffraction patterns revealed that the formed nanostructures are crystalline in nature. X-ray diffraction study reveals the formation of well-crystalline pure Fe3O4 and γ-Fe2O3 nanostructures under different reaction conditions. Fourier transform Infra-red spectroscopic analysis confirms the adsorption of PVME on the surface of iron oxide nanostructures. Finally, the magnetic properties of γ-Fe2O3 and Fe3O4 nanostructures is studied that shows the superparamagnetic behavior of the formed iron oxide nanostructures.  相似文献   

18.
Composite polyvinyl amine/SBA-15 (PVAm/SBA-15) in various amounts of SBA-15 were prepared and characterized. The physical and chemical properties of PVAm/SBA-15 were investigated using FT-IR, XRD, BET, SEM and TGA techniques. The catalytic performance of each material was determined for the Knoevenagel condensation reaction between carbonyl compounds and ethyl cyanoacetate in the presence of ethanol as solvent. The effects of reaction temperature, solvent and the amounts of catalyst as well as recyclability of the catalyst were investigated. The catalyst used for this synthetically useful transformation showed a considerable degree of reusability besides being very active.  相似文献   

19.
The activity of a catalyst depends on the nature of its support, its active site, and its preparation method. This study aimed to employ various types of CeO2 supports such as commercial CeO2 and self-prepared CeO2 for the preparation of copper catalysts. The CuO/CeO2 catalysts were prepared using the polyol process and impregnation method. The catalysts were characterized using Brunauer–Emmett–Teller analysis, scanning electron microscopy, and X-ray analysis, and their catalytic activity for CO removal was evaluated in a microcatalytic reactor. The experimental results showed that the catalytic activity of the CuO/CeO2 catalysts with different calcination temperatures decreased in the following order: 500 °C > 300 °C > 700 °C. Compared to the impregnation method, the polyol process generated well-dispersed metal particles over the support and showed higher CO removal efficiency with low activation energy. Compared to CuO/CeO2 catalysts with commercial CeO2, those with CeO2 that was self-prepared by pyrolysis had a large pore volume and good crystal structure of CeO2 and showed good performance. The catalytic activity for CO removal was in the following order: CuO/CeO2-P (pyrolysis) > CuO/CeO2-C (commercial) > CuO/CeO2-D (deposition precipitation). CuO/CeO2-P catalysts showed good activity even at low temperature. The CuO/CeO2-P(300)-P-120 min catalyst was found to possess the good CO removal rate when the oxygen content was 6%, CO concentration was 500 ppm, catalyst weighed 1.0 g, pollutant gas velocity was 500 mL min−1, SV was 3.7 × 104 h−1, and reaction temperature was 150 °C.  相似文献   

20.
We report a one-step fabrication of α-iron oxyhydroxide/reduced graphene oxide (α-FeOOH/rGO) composites, in which the ferrous sulfate (FeSO4·7H2O) are used as the iron raw and reducing agent to grow goethite (α-FeOOH) and reduce graphite oxide (GO) to rGO in the same time. The morphology, composition and microstructure of the as-obtained samples are systematically characterized by thermogravimetric (TG) analysis, field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and FT-IR. Moreover, their electrochemical properties are investigated using cyclic voltammetry and galvanostatic charge/discharge techniques. The specific capacitance of 452 F g−1 is obtained at a specific current of 1 A g−1 when the mass ratio of α-FeOOH to rGO is up to 80.3:19.7. In addition, the α-FeOOH/rGO composite electrodes exhibit the excellent rate capability (more than 79% retention at 10 A g−1 relative to 1 A g−1) and well cycling stability (13% capacitance decay after 1000 cycles). These results suggest the importance and great potential of α-FeOOH/rGO composites in the applications of high-performance energy-storage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号