首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Incubation of the purified F1F0-ATPase of Propionigenium modestum with dicyclohexylcarbodiimide (DCCD) led to inactivation of the enzyme in a strongly pH-dependent manner. Rapid inactivation occurred at pH 5-7, while the increase of the pH from 7 to 9 resulted in a continuous reduction of the inactivation rate. In the presence of Na+ ions, the ATPase was specifically protected from inactivation by DCCD. The protective effect of Na+ was most pronounced at pH 9.0 and less significant at pH 7.0. In addition to Na+, Li+ also protected the ATPase from inactivation by DCCD, but approximately 10 times higher concentrations were required for the same effect. Similarly, the Na+ concentration causing half-maximal stimulation of ATPase activity was about 10 times below the Li+ concentration required for the same activation. It is concluded from these results that a binding site is present for Na+ or Li+ on the enzyme with an about 10 times lower affinity for the latter alkali ion, which when occupied stimulates ATPase activity and protects it from inactivation by DCCD. Inactivation of ATPase activity by DCCD correlated well with a specific labeling of subunit c of the enzyme in the presence of the [14C]DCCD derivative. Like ATPase inactivation, the labeling was promoted by more acidic pH values and inhibited by Na+ ions. We suggest from these data that the DCCD-reactive amino acid residue of subunit c (most likely Glu-65) must be protonated for the reaction with the carbodiimide and provides the Na(+)-binding site in its deprotonated state. Dissociation of the carboxylic acid (at high pH) and binding of Na+ ions to the carboxylate thus abolish the reactivity toward DCCD.  相似文献   

2.
Previously we have shown that the Na+-translocating Escherichia coli (F1-delta)/Propionigenium modestum (Fo+delta) hybrid ATPase acquires a Na+-independent phenotype by the c subunit double mutation F84L, L87V that is reflected by Na+-independent growth of the mutant strain MPC8487 on succinate [Kaim, G., and Dimroth, P. (1995) J. Mol. Biol. 253, 726-738]. Here we describe a new class of mutants that were obtained by random mutagenesis and screening for Na+-independent growth on succinate. All six mutants of the new class contained four mutations in the a subunit (S89P, K220R, V264E, I278N). Results from site-specific mutagenesis revealed that the substitutions K220R, V264E, and I278N were sufficient to create the new phenotype. The resulting E. coli mutant strain MPA762 could only grow in the absence but not in the presence of Na+ ions on succinate minimal medium. This effect of Na+ ions on growth correlated with a Na+-specific inhibition of the mutant ATPase. The Ki for NaCl was 1. 5 mM at pH 6.5, similar to the Km for NaCl in activating the parent hybrid ATPase at this pH. On the other hand, activation by Li+ ions was retained in the new mutant ATPase. In the absence of Na+ or Li+, the mutant enzyme had the same pH optimum at pH 6.5 and twice the specific activity as the parent hybrid ATPase. In accordance with the kinetic data, the reconstituted mutant ATPase catalyzed H+ or Li+ transport but no Na+ transport. These results show for the first time that the coupling ion selectivity of F1Fo ATPases is determined by structural elements not only of the c subunit but also of the a subunit.  相似文献   

3.
The proton-translocating F1F0 ATP synthase from Clostridium thermoautotrophicum was solubilized from cholate-washed membranes with Zwittergent 3-14 at 58 degrees C and purified in the presence of octylglucoside by sucrose gradient centrifugation and ion-exchange chromatography on a DEAE-5PW column. The purified enzyme hydrolyzed ATP at a rate of 12.6 micromol min(-1) mg(-1) at 58 degrees C and pH 8.5. It was composed of six different polypeptides with molecular masses of 60, 50, 32, 19, 17, and 8 kDa. These were identified as alpha, beta, gamma, delta, epsilon, and c subunits, respectively, as their N-terminal amino acid sequences matched the deduced N-terminal amino acid sequences of the corresponding genes of the atp operon sequenced from Clostridium thermoaceticum (GenBank accession no. U64318), demonstrating the close similarity of the F1F0 complexes from C. thermoaceticum and C. thermoautotrophicum. Four of these subunits, alpha, beta, gamma, and epsilon, constituted the F1-ATPase purified from the latter bacterium. The delta subunit could not be found in the purified F1 although it was present in the F1F0 complex, indicating that the F0 moiety consisted of the delta and the c subunits and lacked the a and b subunits found in many aerobic bacteria. The c subunit was characterized as N,N'-dicyclohexylcarbodiimide reactive. The F1F0 complex of C. thermoautotrophicum consisting of subunits alpha, beta, gamma, delta, epsilon, and c was reconstituted with phospholipids into proteoliposomes which had ATP-Pi exchange, carbonylcyanide p-trifluoromethoxy-phenylhydrazone-stimulated ATPase, and ATP-dependent proton-pumping activities. Immunoblot analyses of the subunits of ATP synthases from C. thermoautotrophicum, C. thermoaceticum, and Escherichia coli revealed antigenic similarities among the F1 subunits from both clostridia and the beta subunit of F1 from E. coli.  相似文献   

4.
The conserved glutamate residue at position 65 of the Propionigenium modestum c subunit is directly involved in binding and translocation of Na+ across the membrane. The site-specific introduction of the cQ32I and cS66A substitutions in the putative vicinity to cE65 inhibited growth of the single-site mutants on succinate minimal agar, indicating that both amino acid residues are important for proper function of the oxidative phosphorylation system. This growth inhibition was abolished, however, if the cF84L/cL87V double mutation was additionally present in the P. modestum c subunit. The newly constructed Escherichia coli strain MPC848732I, harboring the cQ32I/cF84L/cL87V triple mutation, revealed a change in the coupling ion specificity from Na+ to H+. ATP hydrolysis by this enzyme was therefore not activated by NaCl, and ATP-driven H+ transport was not affected by this alkali salt. Both activities were influenced, however, by LiCl. These data demonstrate the loss of the Na+ binding site and retention of Li+ and H+ binding sites within this mutant ATPase. In the E. coli strain MPC848766A (cS66A/cF84L/cL87V), the specificity of the ATPase was further restricted to H+ as the exclusive coupling ion. Therefore, neither Na+ nor Li+ stimulated the ATPase activity, and no ATP-driven Li+ transport was observed. The ATPase of the E. coli mutant MPC32N (cQ32N) was activated by NaCl and LiCl. The mutant ATPase exhibited a 5-fold higher Km for NaCl but no change in the Km for LiCl in comparison to that of the parent strain. These results demonstrate that the binding of Na+ to the c subunit of P. modestum requires liganding groups provided by Q32, E65, and S66. For the coordination of Li+, two liganding partners, E65 and S66, are sufficient, and H+ translocation was mediated by E65 alone.  相似文献   

5.
Helicobacter pylori is a microaerophilic Gram-negative spiral bacterium residing in human stomach. A cb-type cytochrome c oxidase that terminates the respiratory chain was purified to near homogeneity by solubilizing the membranes with Triton X-100 and applying anion exchange, Cu-chelating, and gel filtration chromatographies. Redox- and CO-difference spectra and pyridine ferrohaemochrome analysis showed the enzyme to contain three haems C, one low-spin protohaem, and one high-spin protohaem that probably forms a dioxygen-reducing bimetalic center with a copper atom. The enzyme actively oxidizes soluble cytochrome c from this bacterium (TNmax of about 250 s-1) with a Km of 0.9 microM. Yeast cytochrome c and N,N,N',N'-tetramethyl p-phenylenediamine (TMPD) are also oxidized at similar maximal velocities with larger Km's. Oxygen pulse experiments on resting cells in the presence of ascorbate plus TMPD or L-lactate indicated that this sole terminal oxidase pumps H+, although the H+ pumping activity by proteoliposomes reconstituted from the enzyme and P-lipids was low. Two main bands with haem C at 58 and 26 kDa were observed upon polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate and succeeding protein and haem staining. Sequencing of the operon encoding the subunits of the enzyme revealed the presence of ccoNOQP. N-terminal analysis of the 58 kDa band showed 15 or 13 amino acids coinciding with the amino acid sequences deduced from the DNA of ccoN and ccoO. CcoN, the largest subunit bearing two protohaems and copper, and ccoO, a mono-haem cytochrome subunit form a protein complex with an apparent molecular mass of 58 kDa, even in the presence of sodium dodecyl sulfate. The 26 kDa band is tentatively assumed to be ccoP with two haems C.  相似文献   

6.
Cysteinyl-tRNA synthetase (CRS) from Saccharomyces cerevisiae was purified 2300-fold with a yield of 33%, to a high specific activity (kcat4.3 s-1 at 25 degrees C for the aminoacylation of yeast tRNACys). SDS-PAGE revealed a single polypeptide corresponding to a molecular mass of 86 kDa. Polyclonal antibodies to the purified protein inactivated CRS activity and detected only one polypeptide of 86 kDa in a yeast extract subjected to SDS-PAGE followed by immunoblotting. In contrast to bacterial CRS which is a monomer of about 50 kDa, the native yeast enzyme behaved as a dimer, as assessed by gel filtration and cross-linking. Its subunit molecular mass is in good agreement with the value of 87.5 kDa calculated for the protein encoded by the yeast genomic sequence YNL247w. The latter was previously tentatively assigned to CRS, based on limited sequence similarities to the corresponding enzyme from other sources. Determination of the amino acid sequence of internal polypeptides derived from the purified yeast enzyme confirmed this assignment. Alignment of the primary sequences of prokaryotic and yeast CRS reveals that the larger size of the latter is accounted for mostly by several insertions within the sequence.  相似文献   

7.
The 2,3-dihydroxybiphenyl 1,2-dioxygenase (2,3-DBPD) of Pseudomonas putida OU83 was constitutively expressed and purified to apparent homogeneity. The apparent molecular mass of the native enzyme was 256 kDa, and the subunit molecular mass was 32 kDa. The data suggested that 2,3-DBPD was an octamer of identical subunits. The nucleotide sequence of a DNA fragment containing the bphC region was determined. The deduced protein sequence for 2,3-DBPD consisted of 292 amino acid residues, with a calculated molecular mass of 31.9 kDa, which was in agreement with data for the purified 2,3-DBPD. Nucleotide and amino acid sequence analyses of the bphC gene and its product, respectively, revealed that there was a high degree of homology between the OU83 bphC gene and the bphC genes of Pseudomonas cepacia LB400 and Pseudomonas pseudoalcaligenes KF707.  相似文献   

8.
We report here the large-scale purification of vacuolar (V0V1)-type Na+-ATPase from Enterococcus hirae achieved using column anion-exchange and gel filtration chromatographies; 32 mg of purified enzyme comprising nine subunits, A, B, C, D, E, F, G, I, and K, was obtained from 20 liter culture. This amount is 500-fold larger than that reported in the previous paper [Murata, T., Takase, K., Yamato, I., Igarashi, K., and Kakinuma, Y. (1997) J. Biol. Chem. 272, 24885-24890]. The purified enzyme shows a high specific activity of ATP hydrolysis (35.7 micromol Pi released/min/mg protein). ATP-driven 22Na+ uptake by reconstituted V0V1-proteoliposomes exhibited an apparent Kt value for Na+ of 40 microM, which is near the Km value (20 microM) for Na+ of the ATP hydrolytic activity. Denatured gel electrophoresis revealed that six subunits, A, B, C, D, E, and F, are releasable as the V1 subunit from the V0V1 complex by incubation with ethylenediaminetetraacetic acid; subunit G was not identified. The remaining V0-liposomes containing I and K subunits catalyzed Na+ uptake in response to potassium diffusion potential (Deltapsi, inside negative); the Kt value for Na+ of this reaction was estimated to be about 2 mM. Inhibition by N,N'-dicyclohexylcarbodiimide (DCCD) of the Na+-ATPase activity and Deltapsi-driven Na+ uptake by the V0-liposomes was prevented by the presence of Na+, suggesting that the Na+ binding site overlaps with the DCCD-reactive site.  相似文献   

9.
Calmodulin-dependent protein kinase II was purified to apparent homogeneity with a high yield from the total calmodulin-binding protein fraction of bovine cardiac muscle in a single step by gel filtration column chromatography. This procedure is simple and suitable for adaptation to large scale preparations. The purified calmodulin-dependent protein kinase has a specific enzymic activity of 2.4 mumol/min/mg when mixed histone was used as a substrate. The preparation of enzyme appears to be homogeneous when examined by SDS-PAGE. The molecular weight of the enzyme was determined to be 570 kDa by gel filtration. SDS-PAGE of the enzyme subunit showed a single protein band with an apparent molecular weight of 56 kDa. These results suggest that the calmodulin-dependent protein kinase II from bovine heart is composed of 10 identical subunits. Anti-peptide antibody raised against multifunctional calmodulin-dependent protein kinase II from rat brain showed a single immunoreactive band of 56 kDa on Western blot. These results suggested that bovine cardiac muscle calmodulin-dependent protein kinase could resemble the brain isozyme. Calmodulin-dependent protein kinase II undergoes autophosphorylation with a maximal incorporation of 1 mol of phosphate per mol of the subunit of the enzyme and the autophosphorylated enzyme remains active in the absence of Ca2+ and calmodulin. The concentration of Ca2+ required for the activation of calmodulin-dependent protein kinase II depends on the level of calmodulin in the reaction.  相似文献   

10.
A series of native naturally occurring neutral glycosphingolipids has been analysed by electrospray ionization tandem mass spectrometry using a hybrid magnetic sector-TOF instrument. The collision-induced dissociation products of precursor ions were detected by an orthogonal acceleration time-of-flight mass spectrometer as the second analyser. Glycosphingolipids, with mono- to hexa-saccharide chain lengths with different ceramide constituents, were studied. The result of electrospray ionization in the positive ion mode generally showed singly charged molecular ions with Na+ as adduct, [M + Na]+. The sensitivity of the electrospray ionization was greatly enhanced by addition of NaCl, LiCl (forming [M + Li]+) or KCl (yielding [M + K]+) to the sample. A comparison between the collision-induced dissociation of precursor molecular ions of monoglycosylceramides, using Na+, Li+ and K+ as adducting species, showed that the intensity of the fragment ions and the extent of the daughter ion fragmentation of the molecular ions, are dependent on the type of adduct used. The daughter ion spectra of Li+ adduct ions showed intense sequence fragment ions, both of the saccharide chain and the ceramide moiety, and were superior to those obtained using Na+ or K+. The collision-induced dissociation spectra of the [M + Li]+ ions, of glycosphingolipids containing di- to hexasaccharides, are also presented. Proposed possible fragments, resulting from the CID of the molecular ions [M + Li]+ of monoglycosylceramides, are shown.  相似文献   

11.
A number of low-molecular mass (12-13 kDa) Na+, K+-ATPase inhibitor proteins have been purified from rat brain cytosol by gel filtration followed by FPLC fractionation on a Mono Q anion-exchange column. Eight peaks were obtained using 0.1 M NaCl eluent of which one peak was found to be the most potent inhibitor of Na+, K+-ATPase. The molcular mass of the inhibitor was about 13 kDa on 16.5% SDS/PAGE. The concentration at which 50% inhibition (I50) was found was in the nanomolar range. The inhibitor seems to bind to Na+, K+-ATPase at a site distal from the ATP-binding site. The binding to the ATPase is non-competitive. The CD analysis suggests an unordered secondary structural element. It also inhibits p-nitrophenyl phosphatase activity from rat brain with comparable I50 value to that for Na+, K+-ATPase. The protein does not contain any Trp as evident from Trp fluorescence and amino acid analysis. Amino acid analysis shows that glycine and serine, derivatives of tyrosine and phenylalanine are the predominant amino acids. The data suggests that it is a negatively charged protein in which the contribution of the hydrophobic part is 27%.  相似文献   

12.
Proline dipeptidase (prolidase) was purified from cell extracts of the proteolytic, hyperthermophilic archaeon Pyrococcus furiosus by multistep chromatography. The enzyme is a homodimer (39.4 kDa per subunit) and as purified contains one cobalt atom per subunit. Its catalytic activity also required the addition of Co2+ ions (Kd, 0.24 mM), indicating that the enzyme has a second metal ion binding site. Co2+ could be replaced by Mn2+ (resulting in a 25% decrease in activity) but not by Mg2+, Ca2+, Fe2+, Zn2+, Cu2+, or Ni2+. The prolidase exhibited a narrow substrate specificity and hydrolyzed only dipeptides with proline at the C terminus and a nonpolar amino acid (Met, Leu, Val, Phe, or Ala) at the N terminus. Optimal prolidase activity with Met-Pro as the substrate occurred at a pH of 7.0 and a temperature of 100 degrees C. The N-terminal amino acid sequence of the purified prolidase was used to identify in the P. furiosus genome database a putative prolidase-encoding gene with a product corresponding to 349 amino acids. This gene was expressed in Escherichia coli and the recombinant protein was purified. Its properties, including molecular mass, metal ion dependence, pH and temperature optima, substrate specificity, and thermostability, were indistinguishable from those of the native prolidase from P. furiosus. Furthermore, the Km values for the substrate Met-Pro were comparable for the native and recombinant forms, although the recombinant enzyme exhibited a twofold greater Vmax value than the native protein. The amino acid sequence of P. furiosus prolidase has significant similarity with those of prolidases from mesophilic organisms, but the enzyme differs from them in its substrate specificity, thermostability, metal dependency, and response to inhibitors. The P. furiosus enzyme appears to be the second Co-containing member (after methionine aminopeptidase) of the binuclear N-terminal exopeptidase family.  相似文献   

13.
L-Serine dehydratase from the Gram-positive bacterium Peptostreptococcus asaccharolyticus is novel in the group of enzymes deaminating 2-hydroxyamino acids in that it is an iron-sulfur protein and lacks pyridoxal phosphate [Grabowski, R. and Buckel, W. (1991) Eur. J. Biochem. 199, 89-94]. It was proposed that this type of L-serine dehydratase is widespread among bacteria but has escaped intensive characterization due to its oxygen lability. Here, we present evidence that another Gram-positive bacterium, Clostridium propionicum, contains both an iron-sulfur-dependent L-serine dehydratase and a pyridoxal-phosphate-dependent L-threonine dehydratase. These findings support the notion that two independent mechanisms exist for the deamination of 2-hydroxyamino acids. L-Threonine dehydratase was purified 400-fold to apparent homogeneity and revealed as being a tetramer of identical subunits (m = 39 kDa). The purified enzyme exhibited a specific activity of 5 mu kat/mg protein and a Km for L-threonine of 7.7 mM. L-Serine (Km = 380 mM) was also deaminated, the V/Km ratio, however, being 118-fold lower than the one for L-threonine. L-Threonine dehydratase was inactivated by borohydride, hydroxylamine and phenylhydrazine, all known inactivators of pyridoxal-phosphate-containing enzymes. Incubation with NaB3H4 specifically labelled the enzyme. Activity of the phenylhydrazine-inactivated enzyme could be restored by pyridoxal phosphate. L-Serine dehydratase was also purified 400-fold, but its extreme instability did not permit purification to homogeneity. The enzyme was specific for L-serine (Km = 5 mM) and was inhibited by L-cysteine (Ki = 0.5 mM) and D-serine (Ki = 8 mM). Activity was insensitive towards borohydride, hydroxylamine and phenylhydrazine but was rapidly lost upon exposure to air. Fe2+ specifically reactivated the enzyme. L-Serine dehydratase was composed of two different subunits (alpha, m = 30 kDa; beta, m = 26 kDa), their apparent molecular masses being similar to the ones of the two subunits of the iron-sulfur-dependent enzyme from P. asaccharolyticus. Moreover, the N-terminal sequences of the small subunits from these two organisms were found to be 47% identical. In addition, 38% identity with the N-terminus of one of the two L-serine dehydratases of Escherichia coli was detected.  相似文献   

14.
We have previously purified and characterized a nervous system-specific glycoprotein antigen from adult Drosophila heads, designated Nervana [nerve antigen (NRV)] and identified two separate genes coding for three different proteins. All three proteins share homology with the beta subunits of Na+,K+-ATPase from various other species. In this study we have isolated a new Drosophila Na+,K+-ATPase alpha subunit cDNA clone (PSalpha; GenBank accession no. AF044974) and demonstrate expression of functional Na+,K+-ATPase activity when PSalpha mRNA is coinjected into Xenopus oocytes along with any of the three different Nrv mRNAs. Western blotting, RNase protection assays, and immunocytochemical staining of adult fly sections indicate that NRV2 is expressed primarily in the nervous system. Staining is most intense in the brain and thoracic ganglia and is most likely associated with neuronal elements. NRV1 is more broadly expressed in muscle and excretory tissue and also shows diffuse distribution in the nervous system. Similar to other species, Drosophila expresses multiple isoforms of Na+,K+-ATPase subunits in a tissue- and cell type-specific pattern. It will now be possible to use the advantages of Drosophila molecular and classical genetics to investigate the phenotypic consequences of altering Na+,K+-ATPase expression in various cell and tissue types.  相似文献   

15.
A ferulic acid decarboxylase enzyme which catalyzes the decarboxylation of ferulic acid to 4-hydroxy-3-methoxystyrene was purified from Pseudomonas fluorescens UI 670. The enzyme requires no cofactors and contains no prosthetic groups. Gel filtration estimated an apparent molecular mass of 40.4 (+/- 6%) kDa, whereas sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed a molecular mass of 20.4 kDa, indicating that ferulic acid decarboxylase is a homodimer in solution. The purified enzyme displayed an optimum temperature range of 27 to 30 degrees C, exhibited an optimum pH of 7.3 in potassium phosphate buffer, and had a Km of 7.9 mM for ferulic acid. This enzyme also decarboxylated 4-hydroxycinnamic acid but not 2- or 3-hydroxycinnamic acid, indicating that a hydroxy group para to the carboxylic acid-containing side chain is required for the enzymatic reaction. The enzyme was inactivated by Hg2+, Cu2+, p-chloromercuribenzoic acid, and N-ethylmaleimide, suggesting that sulfhydryl groups are necessary for enzyme activity. Diethyl pyrocarbonate, a histidine-specific inhibitor, did not affect enzyme activity.  相似文献   

16.
Interactions of the F1F0-ATPase subunits between the cytoplasmic domain of the b subunit (residues 26-156, bcyt) and other membrane peripheral subunits including alpha, beta, gamma, delta, epsilon, and putative cytoplasmic domains of the a subunit were analyzed with the yeast two-hybrid system and in vitro reconstitution of ATPase from the purified subunits as well. Only the combination of bcyt fused to the activation domain of the yeast GAL-4, and delta subunit fused to the DNA binding domain resulted in the strong expression of the beta-galactosidase reporter gene, suggesting a specific interaction of these subunits. Expression of bcyt fused to glutathione S-transferase (GST) together with the delta subunit in Escherichia coli resulted in the overproduction of these subunits in soluble form, whereas expression of the GST-bcyt fusion alone had no such effect, indicating that GST-bcyt was protected by the co-expressed delta subunit from proteolytic attack in the cell. These results indicated that the membrane peripheral domain of b subunit stably interacted with the delta subunit in the cell. The affinity purified GST-bcyt did not contain significant amounts of delta, suggesting that the interaction of these subunits was relatively weak. Binding of these subunits observed in a direct binding assay significantly supported the capability of binding of the subunits. The ATPase activity was reconstituted from the purified bcyt together with alpha, beta, gamma, delta, and epsilon, or with the same combination except epsilon. Specific elution of the ATPase activity from glutathione affinity column with the addition of glutathione after reconstitution demonstrated that the reconstituted ATPase formed a complex. The result indicated that interaction of b and delta was stabilized by F1 subunits other than epsilon and also suggested that b-delta interaction was important for F1-F0 interaction.  相似文献   

17.
An alkaliphilic bacterium, Bacillus sp. strain K-1, produces extracellular xylanolytic enzymes such as xylanases, beta-xylosidase, arabinofuranosidase, and acetyl esterase when grown in xylan medium. One of the extracellular xylanases that is stable in an alkaline state was purified to homogeneity by affinity adsorption-desorption on insoluble xylan. The enzyme bound to insoluble xylan but not to crystalline cellulose. The molecular mass of the purified xylan-binding xylanase was estimated to be approximately 23 kDa. The enzyme was stable at alkaline pHs up to 12. The optimum temperature and optimum pH of the enzyme activity were 60 degrees C and 5.5, respectively. Metal ions such as Fe2+, Ca2+, and Mg2+ greatly increased the xylanase activity, whereas Mn2+ strongly inhibited it. We also demonstrated that the enzyme could hydrolyze the raw lignocellulosic substances effectively. The enzymatic products of xylan hydrolysis were a series of short-chain xylooligosaccharides, indicating that the enzyme was an endoxylanase.  相似文献   

18.
The first purification of mouse extracellular superoxide dismutase (EC-SOD) and the analysis of the native enzyme are described. Mouse EC-SOD was purified from lung tissues with a high recovery (41%) and a specific polyclonal antibody against the purified enzyme was obtained. The purified enzyme had a strong affinity for, heparin and a molecular mass of 150 kDa (estimated by a gel filtration chromatography). The native mouse EC-SOD was composed of two different sizes of subunits, a M(r) of 33 and 35 kDa (determined by SDS-PAGE). The 35-kDa subunit had an interchain disulfide bond at the C-terminus and existed as a covalent dimer in the molecule, whereas the 33-kDa subunit resulted from the 35-kDa subunit by truncating its C-terminus as a posttranslational modification, with resultant loss of the interchain disulfide bond. These results suggest that the native mouse EC-SOD is a heterotetramer composed of two different dimers, with or without a covalent bond.  相似文献   

19.
Biochemical properties of the alpha 1 subunits of class A brain calcium channels (alpha 1A) were examined in adult rat brain membrane fractions using a site-directed anti-peptide antibody (anti-CNA3) specific for alpha 1A. Anti-CNA3 specifically immunoprecipitated high affinity receptor sites for omega-conotoxin MVIIC (Kd approximately 100 pM), but not receptor sites for the dihydropyridine isradipine or for omega-conotoxin GVIA. In immunoblotting and immunoprecipitation experiments, anti-CNA3 recognized at least two distinct immunoreactive alpha 1A polypeptides, a major form with an apparent molecular mass of 190 kDa and a minor, full-length form with an apparent molecular mass of 220 kDa. The 220- and 190-kDa alpha 1A polypeptides were also specifically recognized by both anti-BI-Nt and anti-BI-1-Ct antibodies, which are directed against the NH2- and COOH-terminal ends of alpha 1A predicted from cDNA sequence, respectively. These data indicate that the predicted NH2 and COOH termini are present in both size forms and therefore that these isoforms of alpha 1A are created by alternative RNA splicing rather than post-translational proteolytic processing of the NH2 or COOH termini. The 220-kDa form was phosphorylated preferentially by cAMP-dependent protein kinase, whereas protein kinase C and cGMP-dependent protein kinase preferentially phosphorylated the 190-kDa form. Our results identify at least two distinct alpha 1A subunits with different molecular mass, demonstrate that they may result from alternative mRNA splicing, and suggest that they may be differentially regulated by protein phosphorylation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号