首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Approximate graph coloring takes as input a graph and returns a legal coloring which is not necessarily optimal. We improve the performance guarantee, or worst-case ratio between the number of colors used and the minimum number of colors possible, toO(n(log logn)3/(logn)3), anO(logn/log logn) factor better than the previous best-known result.The work of the first author was supported by Air Force Grant AFOSR-86-0078 and NSF PYI Grant 8657527-CCR. The work of the second author was supported by a National Science Foundation Graduate Fellowship.  相似文献   

2.
LetG(V,E) be a simple undirected graph with a maximum vertex degree Δ(G) (or Δ for short), |V| =nand |E| =m. An edge-coloring ofGis an assignment to each edge inGa color such that all edges sharing a common vertex have different colors. The minimum number of colors needed is denoted by χ′(G) (called thechromatic index). For a simple graphG, it is known that Δ ≤ χ′(G) ≤ Δ + 1. This paper studies two edge-coloring problems. The first problem is to perform edge-coloring for an existing edge-colored graphGwith Δ + 1 colors stemming from the addition of a new vertex intoG. The proposed parallel algorithm for this problem runs inO3/2log3Δ + Δ logn) time usingO(max{nΔ, Δ3}) processors. The second problem is to color the edges of a given uncolored graphGwith Δ + 1 colors. For this problem, our first parallel algorithm requiresO5.5log3Δ logn+ Δ5log4n) time andO(max{n2Δ,nΔ3}) processors, which is a slight improvement on the algorithm by H. J. Karloff and D. B. Shmoys [J. Algorithms8 (1987), 39–52]. Their algorithm costsO6log4n) time andO(n2Δ) processors if we use the fastest known algorithm for finding maximal independent sets by M. Goldberg and T. Spencer [SIAM J. Discrete Math.2 (1989), 322–328]. Our second algorithm requiresO4.5log3Δ logn+ Δ4log4n) time andO(max{n2,nΔ3}) processors. Finally, we present our third algorithm by incorporating the second algorithm as a subroutine. This algorithm requiresO3.5log3Δ logn+ Δ3log4n) time andO(max{n2log Δ,nΔ3}) processors, which improves, by anO2.5) factor in time, on Karloff and Shmoys' algorithm. All of these algorithms run in the COMMON CRCW PRAM model.  相似文献   

3.
Although deciding whether the vertices of a planar graph can be colored with three colors is NP-hard, the widely known Grötzsch’s theorem states that every triangle-free planar graph is 3-colorable. We show the first o(n 2) algorithm for 3-coloring vertices of triangle-free planar graphs. The time complexity of the algorithm is $\mathcal{O}(n\log n)Although deciding whether the vertices of a planar graph can be colored with three colors is NP-hard, the widely known Gr?tzsch’s theorem states that every triangle-free planar graph is 3-colorable. We show the first o(n 2) algorithm for 3-coloring vertices of triangle-free planar graphs. The time complexity of the algorithm is O(nlogn)\mathcal{O}(n\log n) .  相似文献   

4.
In a FOCS 1990 paper, S. Irani proved that the First-Fit online algorithm for coloring a graph uses at most O(klogn) colors for k-inductive graphs. In this note we provide a very short proof of this fact.  相似文献   

5.
This paper determines upper bounds on the expected time complexity for a variety of parallel algorithms for undirected and directed random graph problems. For connectivity, biconnectivity, transitive closure, minimum spanning trees, and all pairs minimum cost paths, we prove the expected time to beO(log logn) for the CRCW PRAM (this parallel RAM machine allows resolution of write conflicts) andO(logn · log logn) for the CREW PRAM (which allows simultaneous reads but not simultaneous writes). We also show that the problem of graph isomorphism has expected parallel timeO(log logn) for the CRCW PRAM andO(logn) for the CREW PRAM. Most of these results follow because of upper bounds on the mean depth of a graph, derived in this paper, for more general graphs than was known before. For undirected connectivity especially, we present a new probabilistic algorithm which runs on a randomized input and has an expected running time ofO(log logn) on the CRCW PRAM, withO(n) expected number of processors only. Our results also improve known upper bounds on the expected space required for sequential graph algorithms. For example, we show that the problems of finding connected components, transitive closure, minimum spanning trees, and minimum cost paths have expected sequential spaceO(logn · log logn) on a deterministic Turing Machine. We use a simulation of the CRCW PRAM to get these expected sequential space bounds.  相似文献   

6.
In the online version of the well-known graph coloring problem, the vertices appear one after the other together with the edges to the already known vertices and have to be irrevocably colored immediately after their appearance. We consider this problem on bipartite, i.e., two-colorable graphs. We prove that at least ?1.13746?log2(n)?0.49887? colors are necessary for any deterministic online algorithm to be able to color any given bipartite graph on n vertices, thus improving on the previously known lower bound of ?log2 n?+1 for sufficiently large n. Recently, the advice complexity was introduced as a method for a fine-grained analysis of the hardness of online problems. We apply this method to the online coloring problem and prove (almost) tight linear upper and lower bounds on the advice complexity of coloring a bipartite graph online optimally or using 3 colors. Moreover, we prove that \(O(\sqrt{n})\) advice bits are sufficient for coloring any bipartite graph on n vertices with at most ?log2 n? colors.  相似文献   

7.
In this paper a general technique for reducing processors in simulation without any increase in time is described. This results in an O(√logn) time algorithm for simulating one step of PRIORITY on TOLERANT with processor-time product of O(n log logn); the same as that for simulating PRIORITY on ARBITRARY. This is used to obtain anO(logn/log logn + √logn (log logm ? log logn)) time algorithm for sortingn integers from the set {0,...,m ? 1},mn, with a processor-time product ofO(n log logm log logn) on a TOLERANT CRCW PRAM. New upper and lower bounds for ordered chaining problem on an allocated COMMON CRCW model are also obtained. The algorithm for ordered chaining takesO(logn/log logn) time on an allocated PRAM of sizen. It is shown that this result is best possible (upto a constant multiplicative factor) by obtaining a lower bound of Ω(r logn/(logr + log logn)) for finding the first (leftmost one) live processor on an allocated-COMMON PRAM of sizen ofr-slow virtual processors (one processor simulatesr processors of allocated PRAM). As a result, for ordered chaining problem, “processor-time product” has to be at least Ω(n logn/log logn) for any poly-logarithmic time algorithm. Algorithm for ordered-chaining problem results in anO(logN/log logN) time algorithm for (stable) sorting ofn integers from the set {0,...,m ? 1} withn-processors on a COMMON CRCW PRAM; hereN = max(n, m). In particular if,m =n O(1), then sorting takes Θ(logn/log logn) time on both TOLERANT and COMMON CRCW PRAMs. Processor-time product for TOLERANT isO(n(log logn)2). Algorithm for COMMON usesn processors.  相似文献   

8.
We present an algorithm for maintaining the biconnected components of a graph during a sequence of edge insertions and deletions. It requires linear storage and preprocessing time. The amortized running time for insertions and for deletions isO(m 2/3 ), wherem is the number of edges in the graph. Any query of the form ‘Are the verticesu andv biconnected?’ can be answered in timeO(1). This is the first sublinear algorithm for this problem. We can also output all articulation points separating any two vertices efficiently. If the input is a plane graph, the amortized running time for insertions and deletions drops toO(√n logn) and the query time isO(log2 n), wheren is the number of vertices in the graph. The best previously known solution takes timeO(n 2/3 ) per update or query.  相似文献   

9.
The following three problems concerning random graphs can be solved in (log n)O(1) expected time using linearly many processors: (1) finding the lexicographically first maximal independent set, (2) coloring the vertices using a number of colors that is almost surely within twice the chromatic number, and (3) finding a Hamiltonian circuit.  相似文献   

10.
A certifying algorithm for a problem is an algorithm that provides a certificate with each answer that it produces. The certificate is an evidence that can be used to authenticate the correctness of the answer. A Hamiltonian cycle in a graph is a simple cycle in which each vertex of the graph appears exactly once. The Hamiltonian cycle problem is to determine whether or not a graph contains a Hamiltonian cycle. The best result for the Hamiltonian cycle problem on circular-arc graphs is an O(n2logn)-time algorithm, where n is the number of vertices of the input graph. In fact, the O(n2logn)-time algorithm can be modified as a certifying algorithm although it was published before the term certifying algorithms appeared in the literature. However, whether there exists an algorithm whose time complexity is better than O(n2logn) for solving the Hamiltonian cycle problem on circular-arc graphs has been opened for two decades. In this paper, we present an O(Δn)-time certifying algorithm to solve this problem, where Δ represents the maximum degree of the input graph. The certificates provided by our algorithm can be authenticated in O(n) time.  相似文献   

11.
The graph accessibility problem restricted to graphs whose bandwidth is bounded by a function S(n), denoted by GAP(S(n)), is considered. An algorithm is presented to solve GAP(S(n)) deterministically in space log S(nlogn,{GAP((S(n))k)}k?1 is a log space complete family of problems for NSPACE(logS(n)), for appropriately constructible S(n)∈O(n)?o(logn). Thus, for well-behaved S(n)∈O(logn)?O(loglogn), we obtain: NSPACE(S(n))?DSPACE(S(nlogn).  相似文献   

12.
沈一飞  陈国良  张强锋 《软件学报》2007,18(11):2683-2690
分别在两种重要并行计算模型中给出计算有向基因组排列的反转距离新的并行算法.基于Hannenhalli和Pevzner理论,分3个主要部分设计并行算法:构建断点图、计算断点图中圈数、计算断点图中障碍的数目.在CREW-PRAM模型上,算法使用O(n2)处理器,时间复杂度为O(log2n);在基于流水光总线的可重构线性阵列系统(linear array with a reconfigurable pipelined bus system, LARPBS)模型上,算法使用O(n3)处理器,计算时间复杂度为O(logn).  相似文献   

13.
Given a list of n items and a function defined over sub-lists, we study the space required for computing the function for arbitrary sub-lists in constant time.For the function mode we improve the previously known space bound O(n2/logn) to O(n2loglogn/log2n) words.For median the space bound is improved to O(n2loglog2n/log2n) words from O(n2⋅log(k)n/logn), where k is an arbitrary constant and log(k) is the iterated logarithm.  相似文献   

14.
Parallel algorithms for the problems of selection and searching on sorted matrices are formulated. The selection algorithm takesO(lognlog lognlog*n) time withO(n/lognlog*n) processors on an EREW PRAM. This algorithm can be generalized to solve the selection problem on a set of sorted matrices. The searching algorithm takesO(log logn) time withO(n/log logn) processors on a Common CRCW PRAM, which is optimal. We show that no algorithm using at mostnlogcnprocessors,c≥ 1, can solve the matrix search problem in time faster than Ω(log logn) and that Ω(logn) steps are needed to solve this problem on any model that does not allow concurrent writes.  相似文献   

15.
We give an algorithm to compute the subset partial order (called the subset graph) for a family F of sets containing k sets with N elements in total and domain size n. Our algorithm requires O(nk2/logk) time and space on a Pointer Machine. When F is dense, i.e. N=Θ(nk), the algorithm requires O(N2/log2N) time and space. We give a construction for a dense family whose subset graph is of size Θ(N2/log2N), indicating the optimality of our algorithm for dense families. The subset graph can be dynamically maintained when F undergoes set insertions and deletions in O(nk/logk) time per update (that is sub-linear in N for the case of dense families). If we assume words of b?k bits, allow bits to be packed in words, and use bitwise operations, the above running time and space requirements can be reduced by a factor of blog(k/b+1)/logk and b2log(k/b+1)/logk respectively.  相似文献   

16.
We consider a chromatic variant of the art gallery problem, where each guard is assigned one of k distinct colors. A placement of such colored guards is conflict-free if each point of the polygon is seen by some guard whose color appears exactly once among the guards visible to that point. What is the smallest number k(n) of colors that ensure a conflict-free covering of all n-vertex polygons? We call this the conflict-free chromatic art gallery problem. Our main result shows that k(n) is O(logn) for orthogonal and for monotone polygons, and O(log2 n) for arbitrary simple polygons. By contrast, if all guards visible from each point must have distinct colors, then k(n) is Ω(n) for arbitrary simple polygons, as shown by Erickson and LaValle (Robotics: Science and Systems, vol. VII, pp. 81–88, 2012). The problem is motivated by applications in distributed robotics and wireless sensor networks but is also of interest from a theoretical point of view.  相似文献   

17.
We present a novel distributed algorithm for the maximal independent set problem (This is an extended journal version of Schneider and Wattenhofer in Twenty-seventh annual ACM SIGACT-SIGOPS symposium on principles of distributed computing, 2008). On bounded-independence graphs our deterministic algorithm finishes in O(log* n) time, n being the number of nodes. In light of Linial’s Ω(log* n) lower bound our algorithm is asymptotically optimal. Furthermore, it solves the connected dominating set problem for unit disk graphs in O(log* n) time, exponentially faster than the state-of-the-art algorithm. With a new extension our algorithm also computes a δ + 1 coloring and a maximal matching in O(log* n) time, where δ is the maximum degree of the graph.  相似文献   

18.
Distance labeling schemes are composed of a marker algorithm for labeling the vertices of a graph with short labels, coupled with a decoder algorithm allowing one to compute the distance between any two vertices directly from their labels (without using any additional information). As applications for distance labeling schemes concern mainly large and dynamically changing networks, it is of interest to study distributed dynamic labeling schemes. The current paper considers the problem on dynamic trees, and proposes efficient distributed schemes for it. The paper first presents a labeling scheme for distances in the dynamic tree model, with amortized message complexity O(log2 n) per operation, where n is the size of the tree at the time the operation takes place. The protocol maintains O(log2 n) bit labels. This label size is known to be optimal even in the static scenario. A more general labeling scheme is then introduced for the dynamic tree model, based on extending an existing static tree labeling scheme to the dynamic setting. The approach fits a number of natural tree functions, such as distance, separation level, and flow. The main resulting scheme incurs an overhead of an O(log n) multiplicative factor in both the label size and amortized message complexity in the case of dynamically growing trees (with no vertex deletions). If an upper bound on n is known in advance, this method yields a different tradeoff, with an O(log2 n/log log n) multiplicative overhead on the label size but only an O(log n/log log n) overhead on the amortized message complexity. In the fully dynamic model the scheme also incurs an increased additive overhead in amortized communication, of O(log2 n) messages per operation.  相似文献   

19.
This paper determines upper bounds on the expected time complexity for a variety of parallel algorithms for undirected and directed random graph problems. For connectivity, biconnectivity, transitive closure, minimum spanning trees, and all pairs minimum cost paths, we prove the expected time to beO(log logn) for the CRCW PRAM (this parallel RAM machine allows resolution of write conflicts) andO(logn · log logn) for the CREW PRAM (which allows simultaneous reads but not simultaneous writes). We also show that the problem of graph isomorphism has expected parallel timeO(log logn) for the CRCW PRAM andO(logn) for the CREW PRAM. Most of these results follow because of upper bounds on the mean depth of a graph, derived in this paper, for more general graphs than was known before.For undirected connectivity especially, we present a new probabilistic algorithm which runs on a randomized input and has an expected running time ofO(log logn) on the CRCW PRAM, withO(n) expected number of processors only.Our results also improve known upper bounds on the expected space required for sequential graph algorithms. For example, we show that the problems of finding connected components, transitive closure, minimum spanning trees, and minimum cost paths have expected sequential spaceO(logn · log logn) on a deterministic Turing Machine. We use a simulation of the CRCW PRAM to get these expected sequential space bounds.This research was supported by National Science Foundation Grant DCR-85-03251 and Office of Naval Research Contract N00014-80-C-0647.This research was partially supported by the National Science Foundation Grants MCS-83-00630, DCR-8503497, by the Greek Ministry of Research and Technology, and by the ESPRIT Basic Research Actions Project ALCOM.  相似文献   

20.
Constructing normal bases of GF(qn) over GF (q) can be done by probabilistic methods as well as deterministic ones. In the following paper we consider only deterministic constructions. As far as we know, the best complexity for probabilistic algorithms is O(n2 log4n log2 (log n) + n log n log (log n) log q ) (see von zur Gathen and Shoup, 1992). For deterministic constructions, some prior ones, e.g. Lueneburg (1986), do not use the factorization of Xn - 1 over GF(q). As analysed by Bach, Driscoll and Shallit (1993), the best complexity (from Lueneburg, 1986) is O(n3 log n log(log n) + n2 log n log(log n) log q). For other deterministic constructions, which need such a factorization, the best complexities are O(n3,376 + n2 log n log(log n) log q) (von zur Gathen and Giesbrecht, 1990), or O(n3 log q); see Augot and Camion (1993). Here we propose a new deterministic construction that does not require the factorization of Xn - 1. Its complexity is reduced to O (n3 + n log n log(log n) log q ).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号