首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
为解决高水头溢洪道空蚀破坏问题,设计了3种方案,分别在桩号0+130.73、0+161.78、0+186.39处加设掺气槽,其对应的弗劳德数Fr分别为6.65、7.91、8.53,并采用RNGκ-ε紊流模型和物理模型试验的方法,分析易发生空蚀破坏断面的掺气浓度及沿程水流空化数指标。结果表明,在桩号0+186.39处加设掺气槽,在易发生空蚀破坏截面临底掺气浓度大于15%,沿程水流空化数均大于0.3,效果优于其他2种方案,可有效解决溢洪道空蚀破坏问题。  相似文献   

2.
溢洪洞是水利枢纽工程中重要的泄洪建筑物之一.而且其泄洪流速一般都很高.很容易产生混凝土的空蚀破坏,从而影响建筑物的正常使用,选择合适的体型是溢洪洞防止空蚀破坏的首要环节,而防空蚀破坏的关键是溢洪洞高流速段洞内过流面压力分布不能产生超过混凝土允许的负压力。就金盆水利枢纽工程溢洪洞水力设计及所采取防空蚀破坏的措施进行了介绍。  相似文献   

3.
论述了竖井旋流型与水平旋流型内消能工在体型优化中的重点与方向,结合黄河公伯峡水电站右岸旋流内消能泄洪洞的方案的论证、试验研究与体型优化,进行了连接部位泄流能力的协调与匹配、通气孔的设计、消能率的构成、起旋器出口与旋流洞连接部位后的空化空蚀、洞子的衬砌标准与范围、下游水深的影响等问题的讨论。  相似文献   

4.
针对某水电站超深层挡水放空洞复杂体型,利用3D紊流数值模拟方法,采用VOF方法追踪自由水面,对泄流能力、沿程水面线、流速、压强等水力特性进行了数值模拟分析。结果表明,该放空洞结构泄流能力满足设计要求,设计体型基本合理,有压洞转弯段出现严重的偏流,需对该段体型进行优化;弧形闸室后部两侧突扩结构最小负压0.1MPa,结构易发生空化空蚀,建议减小突扩结构尺寸,延长侧墙长度,尽量减小侧墙坡度;消能工段出口底板部位最小负压为0.1MPa,建议取消挑坎末端水平段,使水流直接挑出。  相似文献   

5.
导流隧洞作为泄水建筑物,洞身、洞顶和底板的压力分布对于避免空蚀空化、振动等不良现象至关重要。以叶巴滩水电站导流隧洞为例,基于物理模型试验、RNG k-ω紊流模型、VOF法建立的三维数值模型模拟了导流隧洞压力分布,通过泄流能力、底板沿程压力等试验数据验证了数值模型的可靠性。结果表明,导流隧洞底板和顶部沿程压力分布均呈下降趋势,但在闸室段、堵头段等水力边界突变处,压力值发生了波动;在转弯段,水流受离心力影响显著,主流区位置和水流压力存在偏离轴线,靠近外边墙的趋势。  相似文献   

6.
天生桥水电站溢洪道三维数值模拟   总被引:1,自引:1,他引:0  
以天生桥水电站为例,采用Flunet软件、有限体积法、κ-ε紊流模型及VOF方法相结合处理自由水面,并对溢洪道泄洪流场进行了三维数值模拟,给出了溢流堰泄流能力、水面线、底板压强分布、水流空化系数分布及典型断面流速分布.数值模拟结果与模型试验结果对比表明,该方法较精确、稳定可靠,为同类工程的优化设计提供了参考依据.  相似文献   

7.
柴油机模型喷孔内空化与空蚀特性试验研究   总被引:1,自引:0,他引:1       下载免费PDF全文
在真实喷油器空蚀试验基础上,利用X射线CT扫描检测到了喷嘴内微量空蚀。为获得空化对空蚀的具体影响,搭建了可同时获得喷孔内空化区域和空蚀区域及形貌的可视化试验装置,采用高速摄影技术和电镜扫描(SEM)技术,针对一个矩形喷孔内空化流动和空蚀特性进行试验研究。结果表明:喷射压力越高,喷孔内空化发展越充分,并出现了单相流、不完全空化流、超空化流和水力回流4种不同流态;云空化脱落呈现出一定的循环周期性,且喷孔下游空蚀区与云空化脱落溃灭区非常吻合。结合壁面附近空化区与液相区交界处存在的空蚀现象,推理云空化脱落溃灭和冷凝溃灭是喷孔内空蚀形成的两大因素。  相似文献   

8.
赵婉璐  张婷  田淳 《水电能源科学》2013,31(11):121-123
针对高速水流脉动压强负值会增大泄流边界发生空蚀破坏的问题,提出一种新型齿墩状内消能工,采用物理模型试验分析了3种齿墩形内消能工的消能特性、脉动压力特性和空化特性。结果表明,采用齿墩设施可增进消能作用并达到消能效果。通过对3种不同面积收缩比的齿墩形内消能工脉动压强研究,得到了脉动压强的分布规律,收缩面积比为0.451时的齿墩形内消能工脉动强度较小,抗空化性能更强,其脉动压强最大点的压强概率密度分布接近正态分布。  相似文献   

9.
《节能》2016,(5)
空蚀是水电机组的主要破坏形式之一,对水电机组空蚀状态实施在线监测,对于水电厂实现预防性维护维修、降低维护成本、确定机组最优工况、保障安全运行具有重要的意义。文中从空蚀机理、监测方法、工程应用等3个方面对水电机组空蚀在线监测进行概述,以期作为空蚀在线监测理论研究的参考。  相似文献   

10.
为了深入了解新型渐缩突扩式洞塞泄洪洞的压强分布和消能率等水力特性,采用三维RNGκ-ε紊流数学模型对渐缩突扩洞塞段水流进行了数值模拟研究,分析了雷诺数、收缩比和相对长度对渐缩突扩洞塞的局部水头损失系数和最小压强系数的影响,并与顺直洞塞的对应水力参数进行对比。结果表明,渐缩突扩洞塞的局部水头损失系数和最小压强系数主要受收缩比和相对长度的影响,且收缩比的影响比相对长度显著。随着收缩比和相对长度的增大,局部水头损失系数和最小压强系数相应减小。与顺直洞塞相比,渐缩突扩洞塞的消能率较小,但具有更强的抵抗空蚀破坏的能力。  相似文献   

11.
Woody biomass in Finland and Sweden comprises mainly four wood species: spruce, pine, birch and aspen. To study the ash, which may cause problems for the combustion device, one tree of each species were cut down and prepared for comparisons with fuel samples. Well-defined samples of wood, bark and foliage were analyzed on 11 ash-forming elements: Si, Al, Fe, Ca, Mg, Mn, Na, K, P, S and Cl. The ash content in the wood tissues (0.2–0.7%) was low compared to the ash content in the bark tissues (1.9–6.4%) and the foliage (2.4–7.7%). The woods’ content of ash-forming elements was consequently low; the highest contents were of Ca (410–1340 ppm) and K (200–1310), followed by Mg (70–290), Mn (15–240) and P (0–350). Present in the wood was also Si (50–190), S (50–200) and Cl (30–110). The bark tissues showed much higher element contents; Ca (4800–19,100 ppm) and K (1600–6400) were the dominating elements, followed by Mg (210–2400), P (210–1200), Mn (110–1100) and S (310–750), but the Cl contents (40–330) were only moderately higher in the bark than in the wood. The young foliage (shoots and deciduous leaves) had the highest K (7100–25,000 ppm), P (1600–5300) and S (1100–2600) contents of all tissues, while the shoots of spruce had the highest Cl contents (820–1360) and its needles the highest Si content (5000–11,300). This paper presented a new approach in fuel characterization: the method excludes the presence of impurities, and focus on different categories of plant tissues. This made it possible to discuss the contents of ash element in a wide spectrum of fuel-types, which are of large importance for the energy production in Finland and Sweden.  相似文献   

12.
正1 ABSTRACT To reduce the effect of global warming on our climate,the levels of CO2emissions should be reduced.One way to do this is to increase the efficiency of electricity production from fossil fuels.This will in turn reduce the amount of CO2emissions for a given power output.Using US practice for efficiency calculations,then a move from a typical US plant running at 37%efficiency to a 760℃/38.5 MPa(1 400/5 580 psi)plant running at 48%efficiency would reduce CO2emissions by 170kg/MW.hr or 25%.  相似文献   

13.
14.
The purpose of this paper is to illustrate the advantages of the direct surface-curvature distribution blade-design method, originally proposed by Korakianitis, for the leading-edge design of turbine blades, and by extension for other types of airfoil shapes. The leading edge shape is critical in the blade design process, and it is quite difficult to completely control with inverse, semi-inverse or other direct-design methods. The blade-design method is briefly reviewed, and then the effort is concentrated on smoothly blending the leading edge shape (circle or ellipse, etc.) with the main part of the blade surface, in a manner that avoids leading-edge flow-disturbance and flow-separation regions. Specifically in the leading edge region we return to the second-order (parabolic) construction line coupled with a revised smoothing equation between the leading-edge shape and the main part of the blade. The Hodson–Dominy blade has been used as an example to show the ability of this blade-design method to remove leading-edge separation bubbles in gas turbine blades and other airfoil shapes that have very sharp changes in curvature near the leading edge. An additional gas turbine blade example has been used to illustrate the ability of this method to design leading edge shapes that avoid leading-edge separation bubbles at off-design conditions. This gas turbine blade example has inlet flow angle 0°, outlet flow angle −64.3°, and tangential lift coefficient 1.045, in a region of parameters where the leading edge shape is critical for the overall blade performance. Computed results at incidences of −10°,   −5°,   +5°,   +10° are used to illustrate the complete removal of leading edge flow-disturbance regions, thus minimizing the possibility of leading-edge separation bubbles, while concurrently minimizing the stagnation pressure drop from inlet to outlet. These results using two difficult example cases of leading edge geometries illustrate the superiority and utility of this blade-design method when compared with other direct or inverse blade-design methods.  相似文献   

15.
A chemical reactor for the steam-gasification of carbonaceous particles (e.g. coal, coke) is considered for using concentrated solar radiation as the energy source of high-temperature process heat. A two-phase reactor model that couples radiative, convective, and conductive heat transfer to the chemical kinetics is applied to optimize the reactor geometrical configuration and operational parameters (feedstock's initial particle size, feeding rates, and solar power input) for maximum reaction extent and solar-to-chemical energy conversion efficiency of a 5 kW prototype reactor and its scale-up to 300 kW. For the 300 kW reactor, complete reaction extent is predicted for an initial feedstock particle size up to 35 μm at residence times of less than 10 s and peak temperatures of 1818 K, yielding high-quality syngas with a calorific content that has been solar-upgraded by 19% over that of the petcoke gasified.  相似文献   

16.
汽轮机数字电液调节系统挂闸异常的技术完善   总被引:1,自引:0,他引:1  
分析了200MW汽轮机数字电液调节系统在运行中存在的挂闸异常问题,采取了相应的技术处理措施,且运行实践效果良好。  相似文献   

17.
为了提高喷油器电磁阀的响应速率,提出了一种基于CPLD(复杂可编程逻辑器件)应用于高压共轨ECU的数字升压模块。鉴于该升压电路结构参数多,其升压电压的恢复响应要求高等特征,基于Pspice建立了升压电路的仿真模型,研究了不同电路参数下升压模块的输出特性,全面优化了该升压模块的性能。结果显示,该升压模块的最大转换效率可以达90%以上。在柴油发动机上对ECU的试验表明,升压电压最大波动不超过10%,其恢复时间仅为1.3ms,功率管最大温升仅为41℃,满足整机运行范围内ECU的需求。  相似文献   

18.
As part of a pilot study investigating the role of microorganisms in the immobilisation of As, Sb, B, Tl and Hg, the inorganic geochemistry of seven different active sinter deposits and their contact fluids were characterised. A comprehensive series of sequential extractions for a suite of trace elements was carried out on siliceous sinter and a mixed silica-carbonate sinter. The extractions showed whether metals were loosely exchangeable or bound to carbonate, oxide, organic or crystalline fractions. Hyperthermophilic microbial communities associated with sinters deposited from high temperature (92–94°C) fluids at a variety of geothermal sources were investigated using SEM. The rapidity and style of silicification of the hyperthermophiles can be correlated with the dissolved silica content of the fluid. Although high concentrations of Hg and Tl were found associated with the organic fraction of the sinters, there was no evidence to suggest that any of the heavy metals were associated preferentially with the hyperthermophiles at the high temperature (92–94°C) ends of the terrestrial thermal spring ecosystems studied.  相似文献   

19.
The physical aspects of the activation energy, in higher and high temperatures, of the metal creep process were examined. The research results of creep-rupture in a uniaxial stress state and the criterion of creep-rupture in biaxial stress states, at two temperatures, are then presented. For these studies creep-rupture, taking case iron as an example the energy and pseudoenergy activation was determined. For complex stress states the criterion of creep-rupture was taken to be Sdobyrev's, i.e. σred = σ1 β + (1 − β)σi, where: σ1-maximal principal stress, σi-stress intensity, β-material constant (at variable temperature β = β(T)). The methods of assessment of the material ageing grade are given in percentages of ageing of new material in the following mechanical properties: 1) creep strength in uniaxial stress state, 2) activation energy in uniaxial stress state, 3) criterion creep strength in complex stress states, 4) activation pseudoenergy in complex stress states. The methods 1) and 3) are the relatively simplest because they result from experimental investigations only at nominal temperature of the structure work, however, for methods 2) and 4) it is necessary to perform the experimental investigations at least at two temperatures.  相似文献   

20.
Hydrogen was produced from primary sewage biosolids via mesophilic anaerobic fermentation in a continuously fed bioreactor. Prior to fermentation the sewage biosolids were heated to 70 °C for 1 h to inactivate methanogens and during fermentation a cellulose degrading enzyme was added to improve substrate availability. Hydraulic retention times (HRT) of 18, 24, 36 and 48 h were evaluated for the duration of hydrogen production. Without sparging a hydraulic retention time of 24 h resulted in the longest period of hydrogen production (3 days), during which a hydrogen yield of 21.9 L H2 kg−1 VS added to the bioreactor was achieved. Methods of preventing the decline of hydrogen production during continuous fermentation were evaluated. Of the techniques evaluated using nitrogen gas to sparge the bioreactor contents proved to be more effective than flushing just the headspace of the bioreactor. Sparging at 0.06 L L min−1 successfully prevented a decline in hydrogen production and resulted in a yield of 27.0  L H2 kg−1 VS added, over a period of greater than 12 days or 12 HRT. The use of sparging also delayed the build up of acetic acid in the bioreactor, suggesting that it serves to inhibit homoacetogenesis and thus maintain hydrogen production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号