首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
并网型风光互补系统容量优化配置方法   总被引:1,自引:0,他引:1  
摘要: 并网型风光互补系统利用风、光资源的互补特性,以跟踪调度曲线为输出目标。合理配置风光储的容量,既可提高互补系统跟踪调度曲线的能力,又能获得较好的经济效益。以抽水蓄能电站为储能装置,借助HOMER软件将月平均气象数据离散成小时平均数据,基于风电、光电的出力模型和互补系统的控制策略,建立了考虑风光互补性、风光资源利用率、跟踪调度曲线等约束,以工程寿命内总收益最大为目标函数的容量优化配置模型,并提出了一种变步长循环离散求解方法。算例验证了模型和算法的合理性。  相似文献   

2.
为解决风光互补电力入网的不确定性给电网调度带来的影响,文章对其的经济调度问题进行研究。针对火电机组的排污特性引入了环境污染惩罚成本,针对风光电力输出功率的间歇波动性引入了备用容量惩罚成本,在考虑系统供需平衡与机组爬坡率等约束条件的基础上,给出了风光电力互补入网的调度策略,建立了含有风光互补电力的动态经济调度模型;应用一种改进的粒子群算法对所提模型进行求解。最后以IEEE-30节点测试系统为例进行仿真分析,仿真结果验证了所提模型的合理性及算法的有效性,同时也说明了风光互补电力入网能够平抑风电的出力波动,可以在保证系统可靠性的基础上,提高风光电力的并网率。  相似文献   

3.
风光互补发电系统中光伏方阵最佳倾角的计算方法   总被引:3,自引:1,他引:2  
介绍一种计算风光互补发电系统中光伏方阵的最佳倾角的方法。用最小二乘法确定光伏方阵的最佳倾角:先计算出倾角β下各月倾斜面上的太阳能方阵发电量与风机发电量之和,然后减去各月负载耗电量的差,再求出一年内上述差值的平方和,能使得此平方和取得最小值的倾角即为方阵最佳倾角β。根据此方法确定出的最佳倾角可以使太阳能和风机发电量相对不足的月份的发电量尽量接近负载需求量,同时又可以解决有的月份风光发电量远大于负载需求,造成极大浪费的问题。  相似文献   

4.
黄俊  顾洁  王晓博 《节能》2010,29(10):18-20
介绍风光互补发电系统组成,结合实例对风光互补系统的设备构成、设备参数、运行数据、发电量等进行了简要介绍,分析了该系统的运行情况。  相似文献   

5.
李春  王伟  梁勃  李军 《太阳能》2012,(12):50-55
分析了风力发电系统与光伏发电系统各自的发电特性,介绍了尚义风光互补发电系统的构成,并指出光伏阵列倾角与风光发电互补系统发电量的关系。通过比较尚义县风光互补发电系统的各自功率曲线及发电量曲线,来优化光伏阵列的倾角设计。  相似文献   

6.
风电和光电各自出力的不稳定性提高了输电服务成本,制约了它们的发展.利用风能和太阳能的互补性可提高发电的可靠性.研究了风光互补后对电网输电服务价格的影响,提出了考虑可再生能源并网的输电服务价格函数表达式,建立了以该函数值最小为目标,以系统发电不足概率(LOLP)和能量缺失率(LPSP)为约束条件的输电服务价格优化模型.采用粒子群算法对目标函数进行求解,对风光互补前后的输电服务价格进行对比,并求出使输电服务价格最低的风光容量配比.通过对实例系统进行计算,验证了该方法的有效性,指出风光互补能有效地降低输电服务价格.  相似文献   

7.
杨光磊 《太阳能》2015,(1):57-61
介绍了并网型风光互补发电系统中各设备的计算模型,分析了各短路点的短路电流分量。以某实际工程为例,通过编制实用Excel表格,只需填写原始数据,即可自动计算发电系统的短路电流,并通过PSASP搭建模型进行仿真,验证了计算结果的可靠性。  相似文献   

8.
分析了风光互补发电系统的技术优势,设计了基于固态变压器结构的并网型风光互补发电系统。分别建立了光伏系统,风力发电系统,超级电容和蓄电池的模型,并分析各环节的控制策略,提出了基于平均功率的储能设备容量配置方法。仿真结果表明,该系统能模拟风光互补系统在不同模式下的运行特性,可以有效降低功率波动和维持电压稳定,并能在低光照强度、低风速等情况下为系统提供短时能量支撑。  相似文献   

9.
陈兵  李群  吴熙  袁晓冬 《水电能源科学》2014,32(11):197-201
为了解风光互补发电系统电能质量特性,构建了风光互补发电系统出力和控制仿真模型,提取仿真运行中的电压、电流数据,并在孤岛和并网运行方式下分析了电网电能质量的变化特性,进而提出了一套面向风光互补发电系统的电能质量分析指标体系,可为风光互补发电系统运行优化及电能质量治理提供合理建议。  相似文献   

10.
针对可再生能源电站和输电网的联合规划问题,提出了一种考虑风光互补特性、储能系统的运行特性和输电线路规划的输电网大规模接纳风能和光能的联合规划方法,其规划目标是在大规模风光并网的前提下,使年弃风成本、年弃光成本、储能投资成本和输电线路扩建成本的总成本最小;建立提升风光接纳能力的储能配置与输电线路联合规划模型,提出风光互补程度、电源损失率和风光储混合电力系统贡献率3个指标来进行评价,并进行算例分析。仿真结果表明,所提输储联合规划方法可以有效地限制对原有网架的扩建,合适风光配比可以进一步节约电网投资和运行成本,并提高系统的稳定性和有效性。  相似文献   

11.
《Applied Energy》2009,86(2):163-169
Solar energy and wind energy are the two most viable renewable energy resources in the world. Good compensation characters are usually found between solar energy and wind energy. This paper recommend an optimal design model for designing hybrid solar–wind systems employing battery banks for calculating the system optimum configurations and ensuring that the annualized cost of the systems is minimized while satisfying the custom required loss of power supply probability (LPSP). The five decision variables included in the optimization process are the PV module number, PV module slope angle, wind turbine number, wind turbine installation height and battery capacity. The proposed method has been applied to design a hybrid system to supply power for a telecommunication relay station along south-east coast of China. The research and project monitoring results of the hybrid project were reported, good complementary characteristics between the solar and wind energy were found, and the hybrid system turned out to be able to perform very well as expected throughout the year with the battery over-discharge situations seldom occurred.  相似文献   

12.
通过对唐山市区太阳能和风能资源状况调查分析,对全年不同方位角和倾角上的太阳能辐射量进行模拟计算,得出南偏东9.8°方向、倾角为39.7°的倾斜面上接收的太阳能辐射量最大,其值为1.62×106Wh/m2。研究中对3kW风力发电机和1kW光伏发电系统的发电量进行了计算,并以1辆纯电动轿车为负载进行了容量配比优化,设计了风力发电系统、风光互补系统及光伏系统三种不同的方案,经过对各方案的经济性、可靠性及稳定性分析,得出最佳的设计方案为风光互补发电系统,该系统风力发电装机容量为3kW,光伏发电装机容量为8.96kW。  相似文献   

13.
风光互补发电系统的优化设计(I) CAD设计方法   总被引:2,自引:0,他引:2  
给出了一整套利用CAD进行风光互补发电系统优化设计的方法。为了精确确定系统每小时的运行状态,采用了更精确地表征组件特性及评估实际获得的风光资源的数学模型。为了寻找出以最小设备投资成本满足用户用电要求的系统配置,首先在风力发电机容量固定不变的前提下,计算了与该容量风力发电机匹配的不同容量的PV方阵和蓄电池所组成的风/光/蓄组合的全年功率供给亏欠率LPSP,根据总的设备投资成本最小化的原则筛选出一组与该容量风力发电机对应的满足用户给定系统供电可靠性即LPSP值的风/光/蓄组合;然后通过改变风力发电机的容量,优选出多个与不同容量风力发电机对应的既能满足用户用电要求同时总的设备购置成本又是最低的风/光/蓄组合,比较它们的成本最终唯一确定出以最小投资成本满足用户用电要求的优化的系统配置。  相似文献   

14.
In this paper, the genetic algorithm (GA) is applied to optimize a grid connected solar photovoltaic (PV)-wind-battery hybrid system using a novel energy filter algorithm. The main objective of this paper is to minimize the total cost of the hybrid system, while maintaining its reliability. Along with the reliability constraint, some of the important parameters, such as full utilization of complementary nature of PV and wind systems, fluctuations of power injected into the grid and the battery’s state of charge (SOC), have also been considered for the effective sizing of the hybrid system. A novel energy filter algorithm for smoothing the power injected into the grid has been proposed. To validate the proposed method, a detailed case study has been conducted. The results of the case study for different cases, with and without employing the energy filter algorithm, have been presented to demonstrate the effectiveness of the proposed sizing strategy.  相似文献   

15.
The utilisation of renewable energy resources for power generation is extremely important for Ireland due to the lack of indigenous fossil fuel resources. A micro-wind turbine is by far the most commonly used grid-connected micro-renewable electricity generation system for domestic applications in Ireland, followed by solar PV. Unfortunately, neither a single micro-wind turbine nor a single solar PV system can provide a continuous power supply due to variations in weather and climate conditions. The coupling of these two systems however can improve the power supply reliability by using the complementary characteristics of wind and solar energy. In this paper, a micro-renewable electricity-generation-system integration technique, tailored for applications in Ireland but generally applicable, is presented. Net present value is the parameter used to identify the optimal system. The optimal system can be a mono system, formed from a single micro-wind turbine or a single solar PV system, or a hybrid system formed from a combination of both. A renewable energy requirement is a constraint used in the integration to eliminate systems that cannot provide sufficient energy from renewable energy resources. The integration technique is applied to find the optimal system, under current Irish conditions, that can be formed from six sample micro-wind turbines and/or solar PV systems assembled from three sample solar PV modules. The analyses show that, with a 50% renewable energy requirement, the optimal system is a mono system containing a 2.4 kW micro-wind turbine; however, critically, the system is not economically viable. Four parameter studies assessing the effect of household electrical load, imported electricity price, exported electricity tariff and wind speed have also been conducted. From these studies it is seen that the most effective way to improve the financial performance of all systems is to offer a higher exported electricity tariff; installing a mono/hybrid system containing a micro-wind turbine in a location with a good wind resource can also have a significant effect.  相似文献   

16.
Renewable resources gained more attention in the last two decades due to persisting energy demand coupled with decrease in fossil fuel resources and its environmental effect to the earth. In Iraq, the electric power generated is not enough to meet the power demand of domestic and industrial sectors. In this article, a hybrid system was proposed as a renewable resource of power generation for grid connected applications in three cities in Iraq. The proposed system was simulated using MATLAB solver, in which the input parameters for the solver were the meteorological data for the selected locations and the sizes of PV and wind turbines. Results showed that it is possible for Iraq to use the solar and wind energy to generate enough power for some villages in the desert or rural area. It is also possible to use such a system as a black start source of power during total shutdown time. Results also indicated that the preferred location for this system is in Basrah for both solar and wind energy.  相似文献   

17.
It has become imperative for the power and energy engineers to look out for the renewable energy sources such as sun, wind, geothermal, ocean and biomass as sustainable, cost-effective and environment friendly alternatives for conventional energy sources. However, the non-availability of these renewable energy resources all the time throughout the year has led to research in the area of hybrid renewable energy systems. In the past few years, a lot of research has taken place in the design, optimization, operation and control of the renewable hybrid energy systems. It is indeed evident that this area is still emerging and vast in scope. The main aim of this paper is to review the research on the unit sizing, optimization, energy management and modeling of the hybrid renewable energy system components. Developments in research on modeling of hybrid energy resources (PV systems), backup energy systems (Fuel Cell, Battery, Ultra-capacitor, Diesel Generator), power conditioning units (MPPT converters, Buck/Boost converters, Battery chargers) and techniques for energy flow management have been discussed in detail. In this paper, an attempt has been made to present a comprehensive review of the research in this area in the past one decade.  相似文献   

18.
The present paper has disseminated the design approach, project implementation, and economics of a nano-grid system. The deployment of the system is envisioned to acculturate the renewable technology into Indian society by field-on-laboratory demonstration (FOLD) and “bridge the gaps between research, development, and implementation.” The system consists of a solar photovoltaic (PV) (2.4 kWp), a wind turbine (3.2 kWp), and a battery bank (400 Ah). Initially, a prefeasibility study is conducted using the well-established HOMER (hybrid optimization model for electric renewable) software developed by the National Renewable Energy Laboratory (NREL), USA. The feasibility study indicates that the optimal capacity for the nano-grid system consists of a 2.16 kWp solar PV, a 3 kWp wind turbine, a 1.44 kW inverter, and a 24 kWh battery bank. The total net present cost (TNPC) and cost of energy (COE) of the system are US$20789.85 and US$0.673/kWh, respectively. However, the hybrid system consisting of a 2.4 kWp of solar PV, a 3.2 kWp of wind turbine, a 3 kVA of inverter, and a 400 Ah of battery bank has been installed due to unavailability of system components of desired values and to enhance the reliability of the system. The TNPC and COE of the system installed are found to be US$20073.63 and US$0.635/kWh, respectively and both costs are largely influenced by battery cost. Besides, this paper has illustrated the installation details of each component as well as of the system. Moreover, it has discussed the detailed cost breakup of the system. Furthermore, the performance of the system has been investigated and validated with the simulation results. It is observed that the power generated from the PV system is quite significant and is almost uniform over the year. Contrary to this, a trivial wind velocity prevails over the year apart from the month of April, May, and June, so does the power yield. This research demonstration provides a pathway for future planning of scaled-up hybrid energy systems or microgrid in this region of India or regions of similar topography.  相似文献   

19.
The capacity allocation of each energy unit in the grid-connected wind–solar–battery hybrid power system is a significant segment in system design. In this paper, taking power grid dispatching into account, the research priorities are as follows: (1) We establish the mathematic models of each energy unit in the hybrid power system. (2) Based on dispatching of the power grid, energy surplus rate, system energy volatility and total cost, we establish the evaluation system for the wind–solar–battery power system and use a number of different devices as the constraint condition. (3) Based on an improved Genetic algorithm, we put forward a multi-objective optimisation algorithm to solve the optimal configuration problem in the hybrid power system, so we can achieve the high efficiency and economy of the grid-connected hybrid power system. The simulation result shows that the grid-connected wind–solar–battery hybrid power system has a higher comprehensive performance; the method of optimal configuration in this paper is useful and reasonable.  相似文献   

20.
In the wake of rising cost of oil and fears of its exhaustion coupled with increased pollution, the governments world-wide are deliberating and making huge strides to promote renewable energy sources such as solar–photovoltaic (solar–PV) and wind energy. Integration of diesel systems with hybrid wind–PV systems is pursued widely to reduce dependence on fossil-fuel produced energy and to reduce the release of carbon gases that cause global climate change. Literature indicates that commercial/residential buildings in the Kingdom of Saudi Arabia (KSA) consume an estimated 10–40% of the total electric energy generated. The study reviews research work carried out world-wide on wind farms and solar parks. The work also analyzes wind speed and solar radiation data of East-Coast (Dhahran), KSA, to assess the technical and economic potential of wind farm and solar PV park (hybrid wind–PV–diesel power systems) to meet the load requirements of a typical commercial building (with annual electrical energy demand of 620,000 kWh). The monthly average wind speeds range from 3.3 to 5.6 m/s. The monthly average daily solar global radiation ranges from 3.61 to 7.96 kWh/m2. The hybrid systems simulated consist of different combinations of 100 kW wind machines, PV panels, supplemented by diesel generators. NREL (and HOMER Energy's) HOMER software has been used to perform the techno-economic study. The simulation results indicate that for a hybrid system comprising of 100 kW wind capacity (37 m hub-height) and 40 kW of PV capacity together with 175 kW diesel system, the renewable energy fraction (with 0% annual capacity shortage) is 36% (24% wind + 12% PV). The cost of generating energy (COE, $/kWh) from this hybrid wind–PV–diesel system has been found to be 0.154 $/kWh (assuming diesel fuel price of 0.1$/L). The study exhibits that for a given hybrid configuration, the number of operational hours of diesel generators decreases with increase in wind farm and PV capacity. Attention has also been focused on wind/PV penetration, un-met load, excess electricity generation, percentage fuel savings and reduction in carbon emissions (relative to diesel-only situation) of different hybrid systems, cost break-down of wind–PV–diesel systems, COE of different hybrid systems, etc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号