首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Computing euclidean maximum spanning trees   总被引:1,自引:0,他引:1  
An algorithm is presented for finding a maximum-weight spanning tree of a set ofn points in the Euclidean plane, where the weight of an edge (p i ,p j ) equals the Euclidean distance between the pointsp i andp j . The algorithm runs inO(n logh) time and requiresO(n) space;h denotes the number of points on the convex hull of the given set. If the points are vertices of a convex polygon (given in order along the boundary), then our algorithm requires only a linear amount of time and space. These bounds are the best possible in the algebraic computation-tree model. We also establish various properties of maximum spanning trees that can be exploited to solve other geometric problems.  相似文献   

2.
In this note, we outline a very simple algorithm for the following problem: Given a set S of n points p1,p2,p3,…,pn in the plane, we have O(n2) segments implicitly defined on pairs of these n points. For each point pi, find a segment from this set of implicitly defined segments that is farthest from pi. The time complexity of our algorithm is in O(nh+nlogn), where n is the number of input points, and h is the number of vertices on the convex hull of S.  相似文献   

3.
Xue  -H. Lin  -Z. Du 《Algorithmica》2002,31(4):479-500
Abstract. Let P = {p 1 , p 2 , \ldots, p n } be a set of n {\lilsf terminal points} in the Euclidean plane, where point p i has a {\lilsf service request of grade} g(p i ) ∈ {1, 2, \ldots, n} . Let 0 < c(1) < c(2) < ?s < c(n) be n real numbers. The {\lilsf Grade of Service Steiner Minimum Tree (GOSST)} problem asks for a minimum cost network interconnecting point set P and some {\lilsf Steiner points} with a service request of grade 0 such that (1) between each pair of terminal points p i and p j there is a path whose minimum grade of service is at least as large as \min(g(p i ), g(p j )) ; and (2) the cost of the network is minimum among all interconnecting networks satisfying (1), where the cost of an edge with service of grade g is the product of the Euclidean length of the edge with c(g) . The GOSST problem is a generalization of the Euclidean Steiner minimum tree problem where all terminal points have the same grade of service request. When there are only two (three, respectively) different grades of service request by the terminal points, we present a polynomial time approximation algorithm with performance ratio \frac 4 3 ρ (((5+4\sqrt 2 )/7)ρ , respectively), where ρ is the performance ratio achieved by an approximation algorithm for the Euclidean Steiner minimum tree problem. For the general case, we prove that there exists a GOSST that is the minimum cost network under a full Steiner topology or its degeneracies. A powerful interior-point algorithm is used to find a (1+ε) -approximation to the minimum cost network under a given topology or its degeneracies in O(n 1.5 (log n + log (1/ε))) time. We also prove a lower bound theorem which enables effective pruning in a branch-and-bound method that partially enumerates the full Steiner topologies in search for a GOSST. We then present a k -optimal heuristic algorithm to compute good solutions when the problem size is too large for the branch-and-bound algorithm. Preliminary computational results are presented.  相似文献   

4.
Here we propose an efficient algorithm for computing the smallest enclosing circle whose center is constrained to lie on a query line segment. Our algorithm preprocesses a given set of n points P={p1,p2,…,pn} such that for any query line or line segment L, it efficiently locates a point c on L that minimizes the maximum distance among the points in P from c. Roy et al. [S. Roy, A. Karmakar, S. Das, S.C. Nandy, Constrained minimum enclosing circle with center on a query line segment, in: Proc. of the 31st Mathematical Foundation of Computer Science, 2006, pp. 765-776] have proposed an algorithm that solves the query problem in O(log2n) time using O(nlogn) preprocessing time and O(n) space. Our algorithm improves the query time to O(logn); but the preprocessing time and space complexities are both O(n2).  相似文献   

5.
6.
The β-skeleton is a measure of the internal shape of a planar set of points. We get an entire spectrum of shapes by varying the parameter β. For a fixed value of β, a β-skeleton is a geometric graph obtained by joining each pair of points whose β-neighborhood is empty. For β≥1, this neighborhood of a pair of points p i ,p j is the interior of the intersection of two circles of radius , centered at the points (1−β/2)p i +(β/2)p j and (β/2)p i +(1−β/2)p j , respectively. For β∈(0,1], it is the interior of the intersection of two circles of radius , passing through p i and p j . In this paper we present an output-sensitive algorithm for computing a β-skeleton in the metrics l 1 and l for any β≥2. This algorithm is in O(nlogn+k), where k is size of the output graph. The complexity of the previous best known algorithm is in O(n 5/2logn) [7]. Received April 26, 2000  相似文献   

7.
Consider the dynamic program h(n)=min 1≤jn a(n,j), where a(n,j) is some formula that may (online) or may not (offline) depend on the previously computed h(i), for i<n. The goal is to compute all h(n), for 1≤nN. It is well known that, if a(n,j) satisfy the Monge property, then the SMAWK algorithm (Aggarwal et al., Algorithmica 2(1):195–208, 1987) can solve the offline problem in O(N) time; a Θ(N) speedup over the naive algorithm. In this paper we extend this speedup to the online case, that is, to compute h(n) in the order n=1,2,…,N when (i) we do not know the values of a(n′,j) for n′>n before h(n) has been computed and (ii) do not know the problem size N in advance. We show that if a(n,j) satisfy a stronger, but sometimes still natural, property than the Monge one, then each h(n) can be computed in online fashion in O(1) amortized time. This maintains the speedup online, in the sense that the total time to compute all h(n) is O(N). We also show how to compute each h(n) in the worst case O(log N) time, while maintaining the amortized time bound. For a(n,j) satisfying our stronger property, our algorithm is also simpler than the standard SMAWK algorithm for solving the offline case. We illustrate our technique on two examples from the literature; the first is the D-median problem on a line, and the second comes from mobile wireless paging. The research of the first author was partially supported by the NSF program award CNS-0626606; the research of the second and third authors was partially supported by Hong Kong RGC CERG grant HKUST6312/04E.  相似文献   

8.
Xue  -H. Lin  -Z. Du 《Algorithmica》2008,31(4):479-500
Abstract. Let P = {p 1 , p 2 , \ldots, p n } be a set of n {\lilsf terminal points} in the Euclidean plane, where point p i has a {\lilsf service request of grade} g(p i ) ∈ {1, 2, \ldots, n} . Let 0 < c(1) < c(2) < ⋅s < c(n) be n real numbers. The {\lilsf Grade of Service Steiner Minimum Tree (GOSST)} problem asks for a minimum cost network interconnecting point set P and some {\lilsf Steiner points} with a service request of grade 0 such that (1) between each pair of terminal points p i and p j there is a path whose minimum grade of service is at least as large as \min(g(p i ), g(p j )) ; and (2) the cost of the network is minimum among all interconnecting networks satisfying (1), where the cost of an edge with service of grade g is the product of the Euclidean length of the edge with c(g) . The GOSST problem is a generalization of the Euclidean Steiner minimum tree problem where all terminal points have the same grade of service request. When there are only two (three, respectively) different grades of service request by the terminal points, we present a polynomial time approximation algorithm with performance ratio \frac 4 3 ρ (((5+4\sqrt 2 )/7)ρ , respectively), where ρ is the performance ratio achieved by an approximation algorithm for the Euclidean Steiner minimum tree problem. For the general case, we prove that there exists a GOSST that is the minimum cost network under a full Steiner topology or its degeneracies. A powerful interior-point algorithm is used to find a (1+ε) -approximation to the minimum cost network under a given topology or its degeneracies in O(n 1.5 (log n + log (1/ε))) time. We also prove a lower bound theorem which enables effective pruning in a branch-and-bound method that partially enumerates the full Steiner topologies in search for a GOSST. We then present a k -optimal heuristic algorithm to compute good solutions when the problem size is too large for the branch-and-bound algorithm. Preliminary computational results are presented.  相似文献   

9.
An optimal piecewise linear continuous fit to a given set of n data points D = {(xi, yi) : 1 ≤ in} in two dimensions consists of a continuous curve defined by k linear segments {L1, L2,…,Lk} which minimizes a weighted least squares error function with weight wi at (xi, yi), where k ≥ 1 is a given integer. A key difficulty here is the fact that the linear segment Lj, which approximates a subset of consecutive data points DjD in an optimal solution, is not necessarily an optimal fit in itself for the points Dj. We solve the problem for the special case k = 2 by showing that an optimal solution essentially consists of two least squares linear regression lines in which the weight wj of some data point (xj, yj) is split into the weights λwj and (1 − λ)wj, 0 ≤ λ ≤ 1, for computations of these lines. This gives an algorithm of worst-case complexity O(n) for finding an optimal solution for the case k = 2.  相似文献   

10.
Let S denote a set of n points in the plane such that each point p has assigned a positive weight w(p) which expresses its capability to influence its neighbourhood. In this sense, the weighted distance of an arbitrary point x from p is given by de(x,p)/w(p) where de denotes the Euclidean distance function. The weighted Voronoi diagram for S is a subdivision of the plane such that each point p in S is associated with a region consisting of all points x in the plane for which p is a weighted nearest point of S.An algorithm which constructs the weighted Voronoi diagram for S in O(n2) time is outlined in this paper. The method is optimal as the diagram can consist of Θ(n2) faces, edges and vertices.  相似文献   

11.
We present an algorithm for computingL 1 shortest paths among polygonal obstacles in the plane. Our algorithm employs the “continuous Dijkstra” technique of propagating a “wavefront” and runs in timeO(E logn) and spaceO(E), wheren is the number of vertices of the obstacles andE is the number of “events.” By using bounds on the density of certain sparse binary matrices, we show thatE =O(n logn), implying that our algorithm is nearly optimal. We conjecture thatE =O(n), which would imply our algorithm to be optimal. Previous bounds for our problem were quadratic in time and space. Our algorithm generalizes to the case of fixed orientation metrics, yielding anO(n??1/2 log2 n) time andO(n??1/2) space approximation algorithm for finding Euclidean shortest paths among obstacles. The algorithm further generalizes to the case of many sources, allowing us to compute anL 1 Voronoi diagram for source points that lie among a collection of polygonal obstacles.  相似文献   

12.
J. Katajainen 《Computing》1988,40(2):147-161
The following geometrical proximity concepts are discussed: relative closeness and geographic closeness. Consider a setV={v 1,v 2, ...,v n } of distinct points in atwo-dimensional space. The pointv j is said to be arelative neighbour ofv i ifd p (v i ,v j )≤max{d p (v j ,v k ),d p (v j ,v k )} for allv k V, whered p denotes the distance in theL p metric, 1≤p≤∞. After dividing the space around the pointv i into eight sectors (regions) of equal size, a closest point tov i in some region is called anoctant (region, orgeographic) neighbour ofv i. For anyL p metric, a relative neighbour ofv i is always an octant neighbour in some region atv i. This gives a direct method for computing all relative neighbours, i.e. for establishing therelative neighbourhood graph ofV. For every pointv i ofV, first search for the octant neighbours ofv i in each region, and then for each octant neighbourv j found check whether the pointv j is also a relative neighbour ofv i. In theL p metric, 1<p<∞, the total number of octant neighbours is shown to be θ(n) for any set ofn points; hence, even a straightforward implementation of the above method runs in θn 2) time. In theL 1 andL metrics the method can be refined to a θ(n logn+m) algorithm, wherem is the number of relative neighbours in the output,n-1≤mn(n-1). TheL 1 (L ) algorithm is optimal within a constant factor.  相似文献   

13.
R. Wenger 《Algorithmica》1997,17(3):322-329
This paper contains a simple, randomized algorithm for constructing the convex hull of a set ofn points in the plane with expected running timeO(nlogh) whereh is the number of points on the convex hull. Supported in part by NSA Grant MDA904-93-H-3026 and by the NSF Regional Geometry Institute (Smith College, July 1993) Grant DMS-90 13220.  相似文献   

14.
《Computers & chemistry》1996,20(4):389-395
Three different geometric parameters, distance r(i,j), angle θ(i,j, k), and dihedral (or torsion) angle φ(i,j, k, l), are commonly used to specify the shape of a molecule. Given Cartesian coordinates it is simple to calculate such parameters. The, non-trivial, inverse problem of finding coordinates when given such parameters is considered here. When a triple of such geometric parameters is given to specify the position of an atom, n, relative to reference atoms i,j, k,…, with known positions, five qualitatively different cases arise: r(n, i), θ(n, i,j), φ(n, i,j, k), θ(j, n, i) and φ(k, n, i,j). Each such geometric coordinate specifies n to lie on a certain type of surface. To calculate its position one must find the point of intersection of three such surfaces. A program, Evclid, that can perform these calculations is integrated with an interactive set of routines that constitute a geometric calculator and editor. It works on (three-dimensional) points and has a number of input, display and output options. It can translate, rotate, reflect, invert and scale as well as edit the point set or subsets.  相似文献   

15.
The Cocke-Younger-Kasami algorithm (CYK) always requires 0(n3) time and 0(n2) space to recognize a trial sentence ω = w1w2…wn, given an e-free context-free grammar in Chomsky Normal form. The same inductive rule that underlies the CYK algorithm may be used to produce a variant that computes the same information but requires (1) a maximum of 0(n3) time and 0(n2) space, and (2) only 0(s(n)) space and time for an unambiguous grammar, where s(n) is the number of triples (A,i,j) for which a nonterminal symbol A derives wiwi+1wi+j?1. In this case, time and space consumed are at worst 0(n2).It is shown in addition, for any grammar, that a parse may be obtained from the table left from the recognition algorithm in time 0(s(n)) whether or not the grammar is ambiguous. The same procedure for the CYK algorithm requires time 0(n2).The performance of our variant is quite similar to that of the Earley algorithm except that the Earley algorithm substitutes for s(n), a function which is usually smaller.The model we use of a RAM is strictly identical to the model used in the CYK algorithm. CR categories: 4.20, 5.23, 5.25.  相似文献   

16.
New tight bounds are presented on the minimum length of planar straight line graphs connecting n given points in the plane and having convex faces. Specifically, we show that the minimum length of a convex Steiner partition for n points in the plane is at most O(log n/log log n) times longer than a Euclidean minimum spanning tree (EMST), and this bound is the best possible. Without Steiner points, the corresponding bound is known to be Θ(log n), attained for n vertices of a pseudo-triangle. We also show that the minimum length convex Steiner partition of n points along a pseudo-triangle is at most O(log log n) times longer than an EMST, and this bound is also the best possible. Our methods are constructive and lead to O(nlog n) time algorithms for computing convex Steiner partitions having O(n) Steiner points and weight within the above worst-case bounds in both cases.  相似文献   

17.
18.
LetQ = {q1, q2,..., qn} be a set ofn points on the plane. The largest empty circle (LEG) problem consists in finding the largest circleC with center in the convex hull ofQ such that no pointq i εQ lies in the interior ofC. Shamos recently outlined anO(n logn) algorithm for solving this problem.(9) In this paper it is shown that this algorithm does not always work correctly. A different approach is proposed here and shown to also result in anO(n logn) algorithm. The new approach has the advantage that it can also solve more general problems. In particular, it is shown that if the center ofC is constrained to lie in an arbitrary convexn-gon, an0(n logn) algorithm can still be obtained. Finally, an0(n logn +k logn) algorithm is given for solving this problem when the center ofC is constrained to lie in an arbitrary simplen-gonP. wherek denotes the number of intersections occurring between edges ofP and edges of the Voronoi diagram ofQ andk ?O(n 2).  相似文献   

19.
We consider the following circle placement problem: given a set of pointsp i ,i=1,2, ...,n, each of weightw i , in the plane, and a fixed disk of radiusr, find a location to place the disk such that the total weight of the points covered by the disk is maximized. The problem is equivalent to the so-called maximum weighted clique problem for circle intersection graphs. That is, given a setS ofn circles,D i ,i=1,2, ...,n, of the same radiusr, each of weightw i , find a subset ofS whose common intersection is nonempty and whose total weight is maximum. AnO (n 2) algorithm is presented for the maximum clique problem. The algorithm is better than a previously known algorithm which is based on sorting and runs inO (n 2 logn) time.  相似文献   

20.
In this paper we consider the problem of finding two parallel rectangles in arbitrary orientation for covering a given set of n points in a plane, such that the area of the larger rectangle is minimized. We propose an algorithm that solves the problem in O(n3) time using O(n2) space. Without altering the complexity, our approach can be used to solve another optimization problem namely, minimize the sum of the areas of two arbitrarily oriented parallel rectangles covering a given set of points in a plane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号