首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
在铒镱共掺磷酸盐玻璃波导放大器系统的速率方程和传输方程中,考虑上转换效应,并引入描述波导中信号光和泵浦光光场相互作用的重叠因子,以此讨论前后双泵结构与单前泵结构中,Er/Yb共掺比、泵浦光和信号光功率、泵浦光模数等因素对信号光增益的影响,并得到信号光增益光谱和放大自发辐射光光谱.模拟结果表明,与单前向泵浦相比,相同功率条件下,前后双向泵浦中,泵浦功率密度低且均匀分布,上转换效应被有效抑制,1532nm处信号光增益增大约2dB/cm,放大自发辐射光总功率提高.前后双向泵浦同样可以减弱多模泵浦光对增益的负面影响.数值模拟结果与实验值基本一致.  相似文献   

2.
离子交换法制备波导放大器的磷酸盐铒玻璃研究   总被引:3,自引:0,他引:3  
研究了不同Al2O3、Na2O、La2O3、Y2O3及AlF3含量的磷酸盐铒玻璃的物理化学性质和光谱性质,通过恒温水浴失重测试的方法探讨了玻璃组分Al2O3、Na2O、La2O3、Y2O3及AlF3对磷酸盐玻璃化学稳定性的影响.结果表明,Al2O3含量增加,玻璃化学稳定性提高,添加少量的AlF3会降低玻璃的化学稳定性,与La2O3相比Y2O3对提高玻璃的热稳定性有益.通过对比不同组分玻璃样品的热性质、机械性质以及析晶、光谱性质的结果,初步得出了一个比较适于离子交换过程的磷酸盐铒玻璃成分.  相似文献   

3.
研究了室温下掺不同摩尔分数Er3+单掺和Er3+/Yb3+双掺的20GaF3-15InF3-17CdF2-15ZnF2-10SnF2-3P2O5-(20-x-y)PbF2-xErF3-yYbF3(x=0.1~0.4,y=1~4)氟氧玻璃的上转换发光性质。755nm激发下,在Er3+单掺系列玻璃中观察到紫色(410nm)、蓝色(465nm)和绿色(522nm、544nm)上转化发光,随着掺杂Er3+浓度的增大,各荧光强度增幅有变缓的趋势。980nm激发下,由于Yb3+的敏化作用,在Er3+/Yb3+双掺系列玻璃中观察到绿色(548nm、527nm)和红色(661nm)上转换发光,固定Er3+浓度,随着Yb3+浓度的增大,各荧光强度先增大后减小,当Yb3+、Er3+掺杂浓度比为15时发光强度最大。该氟氧玻璃具有比氟化物玻璃更好的抗析晶稳定性,掺稀土离子后在不同波长激发下可观察到明亮的红、绿色上转换荧光,是一种有潜质用于红、绿色上转换发光的材料。  相似文献   

4.
OH^-对掺Er^3+/Yb^3+钡镓锗玻璃发光的影响及除水研究   总被引:1,自引:0,他引:1  
钡镓锗玻璃是一种优质的红外发光材料,而钡镓锗玻璃中少量OH-的存在严重影响玻璃的结构并劣化了玻璃的发光性能.实验研究了在原料中引入氟化物除水和在引入氟化物的基础上进行反应气氛法除水两种方法对Er3+/Yb3+共掺钡镓锗玻璃上转换发光、1.53μm发光的影响,采用Frster-Dexter半经验简化模型分析了OH-和Er3+之间的能量转移几率.结果表明:在引入氟化物的基础上进行反应气氛法除水可以将玻璃中的OH-浓度降低到原来的1/11;随OH-浓度的降低,上转换荧光比1.53μm发光增强更明显,545nm绿光增强了2.8倍;OH-和Er3+之间的能量转移常数为1.75×10-19cm4/s,该值比磷酸盐玻璃中OH-和Er3+之间的能量转移常数稍大.  相似文献   

5.
本文报道了掺C60磷酸盐玻璃显微结构特征的研究结果。透射电子显微镜观察表明:在玻璃介质中,C60分子晶体能以结晶固体的形式稳定存在。  相似文献   

6.
采用PECVD法生长的无定型硅和直拉晶体硅为衬底注入Er3 离子的掺铒硅 ,经快速退火后在 15K至 2 93K下均可获得波长为 1 54μm的很强的光致发光。研究了不同的氧含量、退火温度、测量温度和激发功率对掺铒硅光致发光强度的影响和规律 ,对其发光机理进行了初步的探讨  相似文献   

7.
研究在不同氧气含量条件下通过磁控溅射沉积的铝铒共掺氧化锌薄膜及电致发光器件的光电性能。实验发现氧气含量的提高有利于增强Er3+离子的光学活性并降低薄膜中电子陷阱的浓度。另外,由于沉积过程中溅射出的粒子与氧气碰撞导致能量损失,高氧气含量会引起薄膜结晶性下降。在电致发光中,由于氧填充了作为施主的氧空位,强烈依赖于多子浓度的npn异质结器件在纯氩条件下才能获得最强的电致发光。  相似文献   

8.
掺铒碲酸盐玻璃的热力学稳定性和光谱性质的研究   总被引:1,自引:0,他引:1  
分析了掺Er3+碲酸盐玻璃的热力学稳定性能,研究了掺Er3+碲酸盐玻璃的吸收和荧光光谱性质;应用Judd-Ofelt理论计算了碲酸盐玻璃中Er3+离子的强度参数Ω(Ω2=4.79×10-20cm2, Ω4=1.52×10-20cm26=0.66×10-20cm2),计算了离子的自发跃迁几率,荧光分支比;应用McCumber理论计算了Er3+的受激发射截面(σe=10.40×10-21cm2)、Er3+离子4I13/24I15/2 发射谱的荧光半高宽(FWHM=65.5nm)及各能级的荧光寿命(4I13/2能级为τrad=3.99ms);比较了不同基质玻璃中Er3+离子的光谱特性,结果表明掺铒碲酸盐玻璃更适合于掺Er3+光纤放大器实现宽带和高增益放大.  相似文献   

9.
熔制了60P2O5.6Al2O3@(33-x)BaO.xBaF2.1Yb2O3(x=0,3,6,9)和60P2O5.6Al2O3.27BaO@6MF2.1Yb2O3(M=Mg、Ca、Sr、Zn、Ba)(分子分数)玻璃,测试了其折射率、密度、转变温度、析晶温度、熔点温度、红外光谱和紫外吸收光谱,讨论了二价氟化物MF2(M=Mg、Ca、Sr、Zn、Ba)对磷酸盐玻璃热稳定性及内部结构的影响,测试了Yb3+离子的吸收光谱、荧光光谱、荧光寿命,计算了光谱参数,讨论了MF2对Yb3+磷酸盐玻璃光谱性质的影响.结果表明二价金属氟化物是作为网络外体进入到磷酸盐玻璃结构中,并没有改变磷酸盐玻璃内部的[PO4]链状结构,二价金属氟化物还有助于提高Yb3+离子的受激发射截面,和自发辐射几率,荧光半高宽.  相似文献   

10.
稀土掺杂的磷酸盐玻璃作为激光介质和特种光学玻璃材料,其化学稳定性研究是至关重要的.本文主要研究了掺加10mo1%和15mo1%Sm2O3的P2O5-BaO-Al2O3体系玻璃的化学稳定性,研究结果表明:玻璃的耐水性能受玻璃中离子含量的影响较大,Al3 和Sm3 离子的含量越高,结构越稳定,耐水性能越好;玻璃的耐酸性能与结构中阳离子的极化能力(Z2/r)有关,Z2/r越大,耐酸性能越好,而且玻璃的侵蚀是渐缓的,这是由于玻璃表面形成了一层明显的覆盖层所致;玻璃在碱性介质中的侵蚀机理是磷酸盐长链末节的金属离子被水化,产生P-O-P断键,形成正磷酸盐溶解到溶液中,同时,随着稀土离子的增加,耐碱性能变差.  相似文献   

11.
掺铒氧氟碲酸盐玻璃的上转换发光研究   总被引:3,自引:0,他引:3  
研究了掺铒氧氟碲酸盐玻璃的吸收光谱和上转换发光光谱,分析了Er^3 离子在氧氟碲酸盐玻璃中的上转换发光机理.结果表明:通过975nm的激光二极管(LD)激发,在室温下同时观察到强烈的绿光(524和545nm)和红光(655nm),分别是由于Er^3 离子^2H11/2→I15/2,^4S3/2→I15/2,和^4F9/2→I15/2跃迁.随PbF2含量增加,绿光的发光强度增加趋势较小,而红光的发光强度增加趋势大于绿光.上转换发光机理主要涉及能量转移和激发态吸收,强烈的绿光和红光激发都是由于双光子吸收过程.  相似文献   

12.
钡镓锗玻璃是一种优质的红外发光材料,而钡镓锗玻璃中少量OH-的存在严重影响玻璃的结构并劣化了玻璃的发光性能.实验研究了在原料中引入氟化物除水和在引入氟化物的基础上进行反应气氛法除水两种方法对Er3+/Yb3+共掺钡镓锗玻璃上转换发光、1.53μm发光的影响,采用Forster-Dexter半经验简化模型分析了OH-和Er3+之间的能量转移几率.结果表明:在引入氟化物的基础上进行反应气氛法除水可以将玻璃中的OH-浓度降低到原来的1/11;随OH-浓度的降低,上转换荧光比1.53μm发光增强更明显,545nm绿光增强了2.8倍;OH-和Er3+之间的能量转移常数为1.75×10-19cm4/s,该值比磷酸盐玻璃中OH-和Er3+之间的能量转移常数稍大.  相似文献   

13.
研制了一种用于宽带波导放大器的掺铒碲钨酸盐激光玻璃材料,对玻璃热稳定性、光谱性质进行了表征,并在其上采用离子交换法制作了平面光波导.掺铒碲钨酸盐玻璃的转变温度Tg和析晶开始温度Tx分别为377.1和488.5℃;荧光半高宽为52nm;应用McCumber理论,计算得出Er3+离子4I13/2→4I15/2跃迁在峰值波长1532nm的受激发射截面为0.91×10-20cm2. 不同条件下制作了在632.8nm处多模的平面光波导,通过拟合得到Ag+离子在300℃的有效扩散系数De为2.82×10-16μm2,活化能Q为149.7kJ/mol.研究结果表明掺铒碲钨酸盐玻璃具有较好的热稳定性、优良的光谱性能和离子交换性能,有望成为宽带放大的集成光学材料.  相似文献   

14.
采用非水性溶胶-凝胶法制备了Y^3+共掺杂的掺Er^3+:Al2O3粉末,Er^3+浓度为0.1和1.0mol%,Er^3+和Y^3+浓度比为1:0-10.X射线衍射和光致发光(PL)光谱结果表明:900℃烧结的掺0.1和1.0mol%Er^3+:Al2O3粉末为具有非晶化特征的γ和θ混合相结构,非晶化趋势随Y^3+共掺杂浓度增大而增加.掺0.1mol%Er^3+:Al2O3粉末,PL光谱强度和半高宽随掺Y^3+浓度增大无明显变化.掺1.0mol%Er^3+:Al2O3粉末,PL光谱强度和半高宽随掺Y^3+浓度增大而增加,10mol%Y^3+共掺杂粉末的发光强度提高50倍,约为掺0.1m01%Er^3+:Al2O3粉末的10倍,半高宽从77nm增至92nm.Y^3+共掺杂对较高浓度掺Er^3+:Al2O3粉末PL性能的增强作用归因于Y^3+对Er^3+在基体中的分散和配位结构多样性的提高.  相似文献   

15.
掺Er3+氟铅硅酸盐玻璃的光谱性质和热稳定性研究   总被引:1,自引:0,他引:1  
制备了掺Er^3 氟铅硅酸盐玻璃,研究了玻璃的物理性质、热稳定性、吸收光谱、荧光光谱和荧光寿命,应用McCumber理论,计算了能级^4I13/2→^4I15/2跃迁的吸收和受激发射截面.结果表明:以PbF2等分子替代PbO含量,样品密度、折射率、热稳定性、吸收截面和受激发射截面降低,但荧光半高宽和荧光寿命增加,对Er^3 离子在不同玻璃基质中带宽特性的比较发现,Er^3 掺杂50SiO2—50PbF2玻璃的带宽特性与碲酸盐和铋酸盐玻璃相当,大于磷酸盐,锗酸盐和硅酸盐玻璃,表明掺Er^3 氟铅硅酸盐玻璃可作为宽带光纤放大器的基质材料。  相似文献   

16.
掺铒铋酸盐玻璃光谱性质的混合形成体效应   总被引:3,自引:0,他引:3  
测得了Er3+离子在铋酸盐玻璃系列(50~75)Bi2O3-(20~45)B2O3-5Na2O,70Bi2O3-(17~25)B2O3-xZrF4-5Na2O,70Bi2O3-(0~25)B2O3-(0~25)SiO2-5Na2O中的吸收光谱、荧光光谱及4I13/2能级荧光寿命.提出并研究了Er3+离子光谱性质的混合形成体效应,结果表明Er3+离子在铋酸盐玻璃中通过混合形成体效应可以获得较大的有效线宽(△λeff=62~80nm)、较高的受激发射截面(σe=0.76~0.84×10-20cm2)、较宽的荧光半高宽(FWHM=55~80nm)以及较长的荧光寿命(τm=1.6~4.3ms),说明掺Er3+铋酸盐玻璃是光纤放大器实现宽带和高增益放大较为理想的基质材料.  相似文献   

17.
制备了Nd+掺杂四磷酸盐玻璃,测量了吸收光谱、荧光光谱,计算Nd十的发射截面,研究了其荧光特性、浓度猝灭及其机制、以及OH基对荧光强度和能量传递的影响,研究发现在四磷酸盐玻璃Nd3+的最佳浓度约为4.1×1020ions/cm3,在研究光谱性质的基础上实现了Nd3+掺杂四磷酸盐玻璃微片激光器1.054μm的连续激光输出.  相似文献   

18.
采用表面失重法分析40ZnO-10MgO-50P2O5玻璃在酸性溶液中的溶解过程.实验结果表明:含二价金属阳离子的磷酸盐玻璃在水中溶解速度缓慢,但在酸性溶液中,因R2 和H 离子交换加速,破坏了结构的稳定性,磷氧基团很容易发生水解,在pH<3时,玻璃的溶解速率会急剧增大.溶解速率随温度升高呈现指数增加的趋势,溶解活化能随pH值的升高而降低;在高浓度盐酸溶液中,溶解速率随浓度变化出现极值,这一切均应归于H 和H2O活度的双重作用;通过对失重曲线变化的研究发现:玻璃的溶解过程分为两个阶段,第一阶段失重量与时间平方根成正比,第二阶段失重量与时间成正比,说明玻璃表面的水化层经历了形成、发展和稳定的过程.  相似文献   

19.
在研制的Er3+/Ce3+共掺低声子能量碲酸盐玻璃(TeO2-Bi2O3-TiO2)中,分别引入高声子能量WO3、SiO2和B2O3氧化物组分,测试了玻璃样品400~1700 nm范围内的吸收光谱、1.53μm波段荧光谱、Er3+离子荧光寿命和拉曼光谱,结合McCumber理论计算了Er3+离子光谱参数.结果表明:高声子能量氧化物组分的引入,能使声子参与的Er3+/Ce3+离子间能量传递过程变得更为有效,增加了Er3+离子亚稳态能级4I13/2上粒子数积累,从而增强1.53μm波段荧光发射.另外,高声子能量氧化物组分的引入还可以增加荧光半高宽(FWHM)和带宽品质因子(σe×FWHM).研究结果对于获取具有优异光谱特性的掺Er3+光纤放大器(EDFA)的玻璃基质具有实际意义.  相似文献   

20.
通过水热法合成了不同浓度Er3+掺杂ZnWO4纳米棒, 并通过XRD、TEM和DRS等对其进行了表征。通过在模拟太阳光照射下光降解RhB的速度来检测ZnWO4样品的光催化活性, 研究了Er3+掺杂浓度对ZnWO4催化活性的影响。实验结果表明, 当Er3+掺杂浓度为2mol%时, 其光催化性能最好, 因为引进Er3+后, Er3+加快了电荷分离效率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号