首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
生物质微波热解具有反应速率快、能量利用率高等优点,但存在产物选择性不高、品质较低等问题,结合催化剂使用,具有制备高值产品的应用潜力。本文对生物质微波催化热解的研究进展进行了综述,介绍了微波催化热解的机理、反应体系、热解产物等对制备高附加值产品的影响。简述了微波催化热解的机理,从原料、微波吸收剂、催化剂三个方面对微波催化热解体系进行讨论,介绍了不同种类原料对产物产率的差异、不同催化剂对于产物选择性的区别。分析了不同提高产物产率和选择性的方法,指出优化和改善催化剂特性使其具备复合功能、开发大型微波反应器、产物定向富集和转化是目前仍需解决的问题。为生产富烃生物油、高性能生物炭等产品,进而推广到工业应用提供参考。  相似文献   

2.
快速热解是生物质高效转化利用的重要方法之一,然而其目标产物生物油因含氧量高、组分复杂等不足而难以直接利用。通过在热解体系中引入碱土金属氧化物基催化剂,可以将热解产物中的氧元素以CO2和H2O等方式脱除,从而实现生物油品质的提升。总结了典型碱土金属氧化物基催化剂对生物质催化热解过程中发生的酮基化、羟醛缩合、开环和侧链断裂反应及机理,讨论了催化剂类型(CaO、MgO、基于碱土金属氧化物的分子筛和活性炭等)、生物质原料、温度、催化剂用量、停留时间、催化方式、催化剂失活等因素对生物油产率与品质的影响,并对生物质催化热解制备高品质生物油及其应用进行了展望。  相似文献   

3.
生物质作为可再生资源具有低成本、分布广泛且易得等优点,生物质能的开发利用可有效缓解能源压力,减少环境污染。微波热解技术是生产燃料油和高附加值化学品的有效方法之一,与传统的热解相比,微波热解具有加热速率快、均匀性好、选择性加热、节能与易于控制等优点。在简单分析微波热解产物分布的基础上,详细综述了近年来微波热解生物油产率的影响因素,主要包括热解温度、功率、吸波剂、催化剂、原料预处理、加热时间、原料性质和物料尺寸等因素;最后,总结和展望了微波技术在生物质催化热解制备生物油领域应用中存在的问题、解决途径和发展前景。  相似文献   

4.
以HZSM-5分子筛为催化剂,进行低温等离子体(NTP)协同生物质真空热解-HZSM-5催化制备精制生物油的试验,采用响应面法对NTP协同生物质热解-催化制备精制生物油的工艺参数进行了分析和优化,考察了生物质质量与催化剂高度(质高比)、反应温度和体系压力对精制生物油收率的影响,三者对精制生物油的收率具有显著影响,且交互作用显著.对最优工艺条件下制备的精制生物油元素组成、高位热值(High heating value,HHV)、官能团构成和分子组分进行分析,以期为生物质能源高效转化利用提供试验基础据和理论依据.  相似文献   

5.
方书起  蒋璐瑶  李攀  白净  常春 《现代化工》2020,(4):41-45+50
总结了常见的生物质预处理方法,分析了不同催化剂的添加对生物油特性的影响,最后讨论将生物质预处理和催化热解联合作用对热解过程及产物的影响。认为合理的生物质预处理方法能改善生物油的品质,应结合生物质原料特性"因材施教";同时应深入探究催化剂在热解过程中的作用机理,从而选择最佳的预处理方法和催化剂进行联合热解,达到优化生物油特性的目的。  相似文献   

6.
生物质热解所得目标产物生物油因高含氧量、组分复杂等问题难以直接应用,通过使用适宜的催化剂升级热解蒸气可实现生物油的脱氧提质。本文基于前人研究,首先总结了生物质催化热解中金属氧化物和分子筛催化剂的结构特点、催化原理与催化效果。然后详细介绍了微介孔复合型、金属氧化物/ZSM-5复合型双级催化体系的构建原理、催化模式及其对于生物质催化热解产物分布规律产生的影响,并说明了双级催化体系的可行性与实用性;同时概述了影响生物质催化热解的其他因素,包括原料特性、工艺参数、操作模式等。最后针对目前双级催化热解研究与发展中存在的问题,对进行双级催化模式的比较研究、改进催化体系以降低生产成本、发掘双级催化剂的多种使用价值等方向提出了展望。  相似文献   

7.
生物质快速热解制生物油是解决能源短缺的有效途径,通过催化剂的加入可使生物油成分定向转化为系列平台化合物,有助于其高效利用。以松木屑为原料,对其进行热重分析并研究了其热解行为。以NiO/HZSM-5为催化剂,在微波功率为800 W,热解时间为12 min条件下对松木屑快速热解,并对产物进行了计重分析和成分分析。结果表明,NiO/HZSM-5的加入能使生物油产量略有提高。对液相产物的GC-MS分析表明,所用催化剂对松木屑热解具有较好的脱氧效果,有利于平台化合物的定向转化,NiO/HZSM-5在微波加热条件下对生物油的产量及提质具有有效作用。  相似文献   

8.
生物质热解制备高品质生物油研究进展   总被引:1,自引:0,他引:1  
生物质热解制备生物油是能源富集的有效途径,是实现碳闭路循环的重要方式,作为一种环境友好型技术受到广泛关注和研究。然而,生物质热解反应过程复杂,生成的生物油热值低、含氧量高及强酸性等特点,制约了生物油的分离提纯、制备合成气以及燃烧等方面的应用,生物油品质的提升迫在眉睫。本文从生物质三组分、原料预处理、反应参数、催化剂、反应器等方面综述了影响生物油品质的主要因素,分析了生物油的特点,不同预处理下生物质特性的变化与生物油的关系,催化剂参与的热解行为对提升生物油品质的导向作用以及常用生物质热解反应器的特点,并对影响生物油品质的主要因素进行了总结。最后,针对影响制备高品质生物油的诸多因素提出建议,以期为制备高品质生物油提供参考和借鉴。  相似文献   

9.
采用等体积浸渍法制备Mo/ZSM-5催化剂,并应用于生物质快速热解制备生物油。采用Py-GC/MS装置,重点研究了Mo负载量、反应温度、反应时间和催化剂与木粉质量比等参数对生物油产率和组成的影响规律。实验结果表明,与纯木粉热解相比较,ZSM-5和Mo/ZSM-5催化作用下生物油的产率大幅提高;在反应温度为600℃、反应时间为25 s、催化剂与木粉质量比为10/1的条件下,10Mo/ZSM-5催化作用下生物油中芳香烃类化合物的产率和相对含量达到最大值。根据生物油产率和组成的变化,可以得出Mo负载的ZSM-5催化剂强化促进酸类、醛酮类等含氧化合物转化为芳香烃类化合物,有效实现了生物质热解生物油品质的提升。  相似文献   

10.
航空运输业的发展、石化能源的短缺以及环境污染问题,使生物航空煤油的制备得到了广泛关注。为了得到一步催化加氢制生物航空煤油的最佳工艺条件,本文以小桐子油为原料、Pd/Hβ-Al_2O_3为催化剂,在高压反应釜中一步加氢制生物航空煤油。在单因素实验的基础上,利用Box-Behnken中心组合实验设计响应面法对工艺的反应条件(温度、氢压、转速)对C_8~C_(16)烃含量的影响进行了研究。结果表明:温度310℃、氢压2.48MPa、转速86.17r/min为最佳实验反应条件。在此条件下进行3次重复验证试验,脱氧率为99.98%,C_8~C_(16)烃的含量为73.86%。  相似文献   

11.
四种原料生物油-酚醛树脂胶粘剂特性研究   总被引:4,自引:3,他引:1  
利用生物质快速热解液化产物制备燃料或化工产品已成为国内外的研究热点。将四种生物质原料(落叶松、杨木、棉秸秆和玉米秸秆)快速热解液化产物作为苯酚替代物,由此制备出不同种类的热解生物油-PF(酚醛树脂)胶粘剂,并探讨了胶粘剂胶接强度与热解生物油组成的关系。结果表明:落叶松热解生物油-PF胶粘剂的胶接强度最大(1.277 MPa),玉米秸秆热解生物油-PF胶粘剂的胶接强度最小(1.021 MPa);胶粘剂的胶接强度主要与热解生物油中酚类物质含量有关。  相似文献   

12.
催化热解制备左旋葡萄糖酮(LGO)是生物质制备高值化学品的重要方法。开发了一种新型的金属磺化炭催化剂用于高效制备LGO,并研究了热解温度、催化剂与生物质的比例以及金属盐类型对左旋葡萄糖酮生成的影响,研究表明:金属磺化炭明显促进了LGO的选择性,在Ce-SC催化剂作用下,催化热解温度为300℃、原料/催化剂比例为1∶1时,LGO的含量达到了82%;在Co-SC催化剂作用下,催化热解温度为400℃、原料/催化剂比例为1∶1时,LGO的含量达到了64%。  相似文献   

13.
李攀  李缔  隋海清  邵敬爱  王贤华  陈汉平 《化工学报》2015,66(10):4131-4137
通过浸渍法制备MHZSM-5(M Fe,Zr,Co)催化剂,采用激光粒度分析仪、比表面积及孔径分析仪和X射线衍射仪(XRD)对催化剂的性质进行表征,并在立式两段加热炉上进行纤维素快速热解蒸汽的在线催化实验。对不同催化剂条件下的产物分布特性及生物油组成特性进行分析,结果表明,随着催化剂的引入,液相产率从52.06%最大下降至23.63%,气相产率从42.39%最大提高至70.84%,CoHZSM-5对于热解蒸汽的催化气化效果最为明显;纤维素快速热解生物油中以1,6-脱水-β-D-吡喃葡萄糖(左旋葡聚糖)为主,引入催化剂对纤维素热解蒸汽进行在线催化重整后,产物中芳烃类物质显著增加,以FeHZSM-5和ZrHZSM-5效果最佳;HZSM-5催化下生物油中左旋葡聚糖的含量提高至63.78%;催化后热解油中乙酸及丙酸含量均减少,但降低幅度有限。综合催化剂对产率及组分的影响效果来看,FeHZSM-5和ZrHZSM-5对纤维素快速热解蒸汽的催化调控作用较为显著。  相似文献   

14.
微波热解是一种高效的生物质转化利用技术,具有独特的热效应和非热效应,可将生物质转化为液体燃料和化学品,能有效缓解能源压力,减少环境污染。本文着重探讨了生物质原料特性、微波吸收剂、催化剂对生物质微波热解制备高品质液体燃料和化学品的影响。原料特性的影响主要从生物质的水分含量、灰分含量和有效氢碳比三方面展开论述,催化剂包括金属盐、金属氧化物、ZSM-5、微波驱动型催化剂以及其他一些催化剂,如HY、MCM-41和碳基催化剂等。简述了生物质的微波热解特性、液体燃料的组成以及转化机理,并对现存的热解机理复杂、产物复杂不稳定、目标产物选择性差、催化剂易结焦失活、重复性差等问题进行了分析,展望了未来的发展方向,以期为生物质的高效转化利用提供依据。  相似文献   

15.
随着我国原油对外依存度增加和国内烯烃供需矛盾加剧,烯烃原料供应紧张,制约了低碳烯烃行业发展。因此,扩大烯烃原料种类、采用非石油原料生产低碳烯烃有着重要意义。生物质作为原料用于制取烯烃有着广阔的研究前景。催化热解制备低碳烯烃工艺简单,克服了传统气化-合成技术制备过程复杂和周期长等缺点。然而,生物质催化热解制备低碳烯烃工艺过程也存在诸多影响因素,如生物质原料特性、催化剂类型和热解工艺条件等。本文着重讨论了原料种类、氢碳有效比、碱金属及碱土金属、温度、催化剂与原料比、反应装置、热解方式和催化剂种类等因素对低碳烯烃产率的影响,其中催化剂是提高低碳烯烃产率的关键因素。目前,ZSM-5分子筛催化剂广泛用于该工艺研究中;由于其易积炭快速失活,催化剂改性成为了研究的热点。针对现研究中改性方式较为单一且改性过程中存在的不足,提出了两种可行的分子筛改性方法。此外,鉴于还未见专门用于催化热解制备低碳烯烃的反应装置,文中给出了一个反应器设计参考性的意见。  相似文献   

16.
生物质热裂解是生物质在隔绝空气的条件下,快速加热裂解,裂解蒸汽经快速冷却制得棕褐色液体产物。将生物质热解生成生物油,不仅便于运输和储存,而且还可以作为生产化工产品的原料。主要介绍了国内外生物质纤维素裂解制备生物油工艺、裂解反应器的特点等。就我国目前的技术,建议开发高效裂解工艺、新型高效反应器、研究反应机理以及开发高效催化剂等,从而降低生物质裂解油成本。  相似文献   

17.
吴乐  王竞  王玉琪  郑岚 《化工学报》2020,71(5):2182-2189
生物燃料作为一种可部分代替化石燃料的潜在能源具有绿色、可再生、无硫等优势,但其生产成本一般较高。生物质油与蜡油在催化裂化装置中的共炼通过利用炼厂已有设备可有效降低生物炼厂的投资费用进而降低生物燃料的生产成本。为同时降低共炼过程的经济费用和环境影响以筛选最优的生物质原料和生物质油制备技术,采用Eco-indicator 99方法量化共炼过程的环境影响,提出了针对该过程的多目标优化模型。结果表明:无论是降低经济费用还是减少环境影响,采用催化热解技术制备生物质油优于快速热解;不同目标下所获得的最优生物质原料不同;生物质原料在费用和环境影响中占比最大。因此,在对共炼过程进行优化时,需要考虑过程对环境的影响,而降低生物质原料的消耗对共炼过程费用和环境影响的降低最为有效。  相似文献   

18.
综述了生物质通过微波裂解转化制备生物燃料的新方法,重点比较了微波干燥预处理与常规干燥方法,分析了微波干燥后的生物质特性、微波作为热源对生物质裂解的影响及微波裂解机理. 对生物质微波裂解未来的发展方向作了预测,包括寻找低耗的生物质原料、高效的催化剂、开发高品位的生物油及对微波裂解的机理进行深入研究.  相似文献   

19.
生物质催化热解获得生物油等高质产品是最有前途替代传统化石能源的方法之一,但在热解过程中存在着严重的催化剂失活问题,其中积炭是导致催化剂失活的最主要因素。本文对近年来生物质催化热解领域的催化剂积炭问题进行综述,重点介绍催化剂积炭失活原因及表征方法、积炭的影响因素分析(催化剂结构、催化剂酸性与反应温度)、抑制催化剂积炭的方法 (催化剂改性、高压反应条件等)以及积炭催化剂再生方法 (氧化灼烧再生、臭氧低温再生、非热等离子体再生等),并介绍了近年来新兴的微波催化热解技术对催化剂积炭的抑制和消除作用,然后针对该领域目前所面临的困难和发展方向进行展望,以期为生物质催化热解过程中催化剂积炭问题研究提供理论基础。  相似文献   

20.
针对塑料成分复杂、热解产油组分不稳定和品质控制难的问题,本文以市政污泥为原料制备Fe负载污泥基生物炭催化剂,以聚丙烯塑料(PP)催化热解促进焦油裂解与合成气生产的试验路线开展研究,分析了PP热解产物中焦油的去除效果、富H2合成气关键组分以及催化热解过程对污泥基生物炭表面特性的影响。结果显示FeCl3浸渍比为5%(质量分数,以Fe计)制备的污泥基生物炭可显著促进PP催化热解产氢,1g塑料氢气产率达17.39mmol,分别高于未经Fe负载污泥生物炭催化对照组268.43%以及纯PP热解对照组2046.91%。催化热解过程强化了焦油裂解,焦油裂解率达29.65%。焦油组分中醇类物质相对占比下降,烯烃类与卤代酯类物质相对占比上升。同时,催化热解后污泥基生物炭表面出现特殊的薄层状孔隙结构,比表面积增至225.90m2/g。XPS分析发现污泥基生物炭表面的碳氧官能团结合碳、晶格氧以及羧基氧相对比例上升,证明在此Fe浸渍比例下出现了更多的活性位点。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号