首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
应用化工过程模拟软件Aspen Plus V7.3对甲醇-四氢呋喃最低共沸物系的连续萃取精馏过程进行了模拟与优化。通过Aspen物性分析,筛选出合适的萃取剂为二甲基亚砜。确定了双塔连续萃取精馏的工艺流程,并利用灵敏度分析工具考察了萃取精馏塔的理论塔数、原料进料位置、萃取剂进料位置、回流比、溶剂比(萃取剂对原料的物质的量比)对分离效果的影响。确定的最佳工艺方案为:全塔理论板数为32,原料和萃取剂分别在第26块和第4块理论板进料,回流比为3,溶剂比为1.9。在此工艺条件下:萃取精馏塔塔顶四氢呋喃的分离效果达99.98%,萃取剂回收塔塔顶甲醇的纯度达到99.96%;萃取剂二甲基亚砜的循环补充量为8.58 mol/h。模拟与优化结果为甲醇-四氢呋喃共沸物连续萃取精馏分离过程的设计和操作提供了参考。  相似文献   

2.
以离子液体1-乙基-3-甲基咪唑醋酸盐([Emim]AC)为萃取剂,萃取精馏分离乙酸甲酯和甲醇共沸体系。采用Aspen Plus流程模拟软件,对萃取精馏工艺进行了模拟和优化。考察了溶剂比、全塔理论塔板数、原料进料位置、萃取剂进料位置和回流比等工艺参数对分离效果的影响。萃取精馏塔的最佳工艺参数为:全塔理论板数30,原料和萃取剂进料位置分别为第23块和第2块理论板,回流比为1.0,溶剂比为0.7。闪蒸罐操作温度和压力分别为85℃和20 kPa。在最优工艺条件下,产品乙酸甲酯的质量分数达到99.95%,甲醇的质量分数达到99.54%,均满足分离要求。说明采用离子液体[Emim]AC作为萃取剂分离乙酸甲酯和甲醇共沸物具有工业应用前景。  相似文献   

3.
利用COSMO-SAC模型对常用萃取剂进行筛选,进而确定对二甲苯适合作为分离乙醇-丙酸乙酯二元共沸物系的萃取剂,并利用汽液平衡实验验证了所选萃取剂的分离效果。结果表明对二甲苯能够分离乙醇-丙酸乙酯共沸物系。采用Aspen Plus模拟软件对乙醇-丙酸乙酯-对二甲苯三元体系进行了连续萃取精馏模拟,并获得了适宜的工艺参数:萃取精馏塔中,理论塔板数为60块,原料进料位置为第50块塔板,萃取剂进料位置为第25块塔板,回流比为7,溶剂比为0.8,塔顶乙醇的含量可达到99.85%;溶剂回收塔中,理论塔板数为30块,进料塔板的位置为第11块塔板,回流比为6,塔顶得到丙酸乙酯的质量分数为99.0%。  相似文献   

4.
采用Aspen Plus流程模拟软件对叔丁醇-水体系的萃取精馏过程进行流程模拟,采用离子液体1-乙基-3-甲基咪唑醋酸盐([EMIM][AC])和传统溶剂乙二醇分别作为萃取剂,并对二者分别作为萃取剂的流程进行对比.通过灵敏度分析工具(Sensitivity)考查了溶剂比、理论塔板数、回流比、原料进料位置和溶剂进料位置对分离效果的影响.结果显示,采用[EMIM][AC]萃取分离叔丁醇-水二元共沸体系的最佳工艺优化条件为:全塔理论塔板数为25,回流比为0.9,溶剂比为0.7,原料和萃取剂进料位置分别为第15块理论板和第2块理论板,塔顶关键轻组分叔丁醇质量分数为0.999,收率为99.9%,同时,[EMIM][AC]的回收率达到100%.与乙二醇相比,[EMIM][AC]作为萃取剂的萃取精馏塔塔顶和塔底能耗分别减少了32.72%和45.19%.  相似文献   

5.
通过Aspen Plus化工流程模拟软件,利用萃取精馏法,以二甲基亚砜(DMSO)为萃取剂,对甲醇-乙酸乙酯共沸物进行了分离模拟研究。确定最优工艺参数为:萃取精馏塔理论板数41,混合物进料位置25,萃取剂进料位置4,回流比2.1,溶剂比3.8;溶剂回收塔理论板数12,进料位置7,回流比0.7。萃取精馏塔塔顶乙酸乙酯质量分数达99.80%,溶剂回收塔塔顶甲醇质量分数达99.74%。对分离过程优化操作及设计提供了理论依据。  相似文献   

6.
采用萃取精馏技术对二氯甲烷和甲醇的共沸体系进行分离,以水为萃取剂,通过Aspen Plus软件对该过程进行工艺流程模拟,并利用灵敏度分析模块对萃取精馏塔的理论板数、进料位置、溶剂比、回流比和溶剂回收塔的理论板数、进料位置、回流比等参数对分离效果的影响进行了详细分析,确定了最优工艺参数为:萃取精馏塔理论板数为28,原料进料位置在第14块板,萃取剂进料位置在第4块板,溶剂比为0.6,回流比为1.6,塔顶产品二氯甲烷含量达到99.7%;溶剂回收塔理论塔板数为22,进料位置在第16块板,回流比为1.8,塔顶甲醇含量达到99.8%。在上述模拟优化的基础上进行了实验验证,实验结果与模拟结果相一致,验证了模拟结果的可靠性。最后,对某药厂年处理量为6 200 t的分离过程进行设计。  相似文献   

7.
《应用化工》2022,(6):1190-1193
采用萃取精馏技术对二氯甲烷和甲醇的共沸体系进行分离,以水为萃取剂,通过Aspen Plus软件对该过程进行工艺流程模拟,并利用灵敏度分析模块对萃取精馏塔的理论板数、进料位置、溶剂比、回流比和溶剂回收塔的理论板数、进料位置、回流比等参数对分离效果的影响进行了详细分析,确定了最优工艺参数为:萃取精馏塔理论板数为28,原料进料位置在第14块板,萃取剂进料位置在第4块板,溶剂比为0.6,回流比为1.6,塔顶产品二氯甲烷含量达到99.7%;溶剂回收塔理论塔板数为22,进料位置在第16块板,回流比为1.8,塔顶甲醇含量达到99.8%。在上述模拟优化的基础上进行了实验验证,实验结果与模拟结果相一致,验证了模拟结果的可靠性。最后,对某药厂年处理量为6 200 t的分离过程进行设计。  相似文献   

8.
应用化工过程模拟软件Aspen Plus对丙酮-氯仿最低共沸物系的连续萃取精馏过程进行了模拟与优化。通过Aspen物性分析,筛选出合适的萃取剂为二甲基亚砜。确定了双塔连续萃取精馏的工艺流程,并利用灵敏度分析工具考察了萃取精馏塔的理论塔数、回流比、原料进料位置、萃取剂进料位置、溶剂比(萃取剂对原料的物质的量比)对分离效果的影响。确定的最佳工艺方案为:全塔理论板数为45,原料和萃取剂分别在第11块和第3块理论板进料,回流比为2.5,溶剂比为1.9。在此工艺条件下:萃取精馏塔塔顶丙酮的分离效果达99.95%,萃取剂回收塔塔顶氯仿的纯度达到98.34%;萃取剂二甲基亚砜的循环补充量为5.557mol/h。模拟与优化结果为丙酮-氯仿共沸物连续萃取精馏分离过程的设计和操作提供了参考。  相似文献   

9.
基于化工模拟软件Aspen Plus,选用苯甲醚为萃取剂,采用UNIFAC模型,对甲醇-苯共沸体系的连续萃取精馏过程进行模拟与条件优化。采用Sensitivity灵敏度分析考察了萃取精馏塔的的溶剂比(萃取剂对原料的物质的量比)、全塔理论板数、原料进料位置、萃取剂进料位置、回流比等因素对分离效果与热负荷的影响。确定的最佳工艺方案为:全塔理论板数为28,原料和萃取剂分别在第22块和第6块理论板进料,回流比为1,溶剂比为2。在此工艺方案下:产品甲醇和苯的纯度均达99.94%,萃取剂苯甲醚的回收率达99.99%,模拟与优化结果为甲醇-苯共沸物连续萃取精馏分离过程的工业化设计和操作提供了理论依据和设计参考。  相似文献   

10.
基于Aspen Plus模拟软件,选用UNIFAC物性方法对变压精馏分离C_4与甲醇共沸物过程进行模拟与优化。考察了理论板数、回流比及进料位置对产品质量分数和能耗的影响。确定了较佳工艺条件:加压塔理论板数为30,回流比为1.2,原料进料位置分别为第15块塔板,塔釜C_4质量分数为99.99%;低压塔理论板数为20,回流比为1.2,进料位置为第9块塔板,塔釜甲醇质量分数为99.99%。与传统萃取精馏相比,变压精馏能耗稍高,但无需引入其他组分。  相似文献   

11.
采用Aspen Plus模拟软件,对以离子液体1-乙基-3-甲基咪唑四氟硼酸盐[EMIM][BF_4]为萃取剂,模拟了萃取精馏分离异丙醇-乙腈共沸物系的工艺流程。使用灵敏度分析工具优化得出萃取精馏塔的最佳工艺参数是:全塔理论板数26,离子液体和原料进料位置分别为第3块、第11块塔板,回流比为0.9,溶剂比为1.6。在最佳的工艺条件下,塔顶产品异丙醇的质量分数达到99.9%,满足分离要求。说明[EMIM][BF_4]作为分离异丙醇-乙腈共沸物系的萃取剂具有工业前景。  相似文献   

12.
孙畅  白鹏  梁金华  张鸾 《现代化工》2013,33(6):108-111
首次研究了间歇萃取精馏方法分离环己烷-正丙醇二元共沸物。通过溶剂选择原理选出DMF作为分离此共沸物系的溶剂,采用UNIFAC模型对常压下环己烷-正丙醇物系和加入溶剂DMF后的物系进行气液平衡模拟,并进行了实验验证,其中模拟结果与实验数据吻合较好。通过间歇萃取精馏分离此共沸物的实验研究来进一步考察所选萃取剂的效果。结果表明,DMF能够消除环己烷-正丙醇共沸物系的共沸点,采用有30块理论板的填料塔,萃取剂进料位置为第4块板,溶剂质量比为1∶1,回流比为3∶1时,塔顶环己烷产品质量分数为96.2%,回收率为72.2%。  相似文献   

13.
以离子液体1,3-二甲基咪唑磷酸二甲酯盐([DMIM]DMP)为萃取剂,分离乙醇和2-丁酮共沸体系。采用Aspen Plus流程模拟软件,对乙醇和2-丁酮体系的萃取精馏过程进行了模拟。考察了溶剂比、全塔理论塔板数、原料进料位置、萃取剂进料位置和回流比等因素对分离效果的影响,获得了萃取精馏分离乙醇和2-丁酮体系的最佳工艺优化条件为:萃取精馏塔的全塔理论板数为22,原料和萃取剂进料位置分别为第11块和第3块理论板,回流比为0.5,溶剂比为0.5。在此条件下,产品2-丁酮的摩尔分数达到99.98%,乙醇的摩尔分数达到99.99%,再生的萃取剂[DMIM]DMP的摩尔分数达到100%。说明以[DMIM]DMP为萃取剂萃取分离乙醇和2-丁酮共沸物具有很好的效果。  相似文献   

14.
冷辰  辛华  王鸿佳  曲颖  张志刚 《山东化工》2022,(2):17-19,22
使用Aspen Plus过程模拟软件,模拟了离子液体1-烯丙基-3-甲基咪唑氯盐([AMIM] Cl)作为萃取剂,萃取精馏分离丙酮和甲醇共沸物的过程.分析了全塔理论板数、原料进料位置、回流比、塔顶产品产出量等因素对分离丙酮和甲醇共沸物分离效果的影响.获得的最佳工艺条件为:萃取精馏塔的全塔理论板为27块,原料进料位置为第...  相似文献   

15.
基于Aspen Plus软件,对二异丙醚-异丙醇共沸体系的萃取精馏过程进行模拟与条件优化。采用Sensitivity灵敏度分析考察了多个因素对分离效果与热负荷的影响。确定的最佳工艺方案为:萃取精馏塔全塔理论板数15块、原料进料位置为第5块、萃取剂进料位置为第2块、回流比为0.5、溶剂比为0.18。  相似文献   

16.
辛华  冷辰  王鸿佳  曲颖  张志刚 《山东化工》2022,51(1):210-212,220
使用Aspen Plus过程模拟软件,模拟了离子液体1-甲基-3-甲基咪唑磷酸二甲酯([MMIM][DMP])作为萃取剂,萃取精馏分离丙酮和甲醇共沸物的过程.分析了全塔理论板数、原料进料位置、回流比、塔顶产品产出量等因素对分离丙酮和甲醇共沸物分离效果的影响.获得的最佳工艺条件为:萃取精馏塔的全塔理论板为40块,原料进料...  相似文献   

17.
利用Aspen Plus化工流程模拟软件采用萃取精馏法,以二甲基亚砜(DMSO)为萃取剂,对乙酸乙酯和异丙醇共沸体系的分离进行了模拟和优化。确定最优工艺参数为:萃取精馏塔理论板数43,混合物进料位置28,萃取剂进料位置4,回流比2.3,溶剂比4;溶剂回收塔理论板14,进料位置8,回流比1。萃取精馏塔塔顶乙酸乙酯含量99.80%,溶剂回收塔塔顶异丙醇含量99.40%。对工业化分离过程优化操作及设计具有指导意义。  相似文献   

18.
基于甲醇-苯二元共沸体系的压力敏感性,利用Aspen Plus软件对变压精馏(PSD)分离甲醇-苯工艺进行模拟与优化。采用序贯迭代法,以年度总费用(TAC)最小为目标函数,确定了最佳工艺条件:低压塔理论板数19,原料进料位置为第12块塔板,回流板位置为第9块板,回流比0.7;高压塔理论板数21,进料位置第14块塔板,回流比1,所得甲醇和苯产品纯度均达到了99.9%。同时,探究了变压精馏分离甲醇-苯工艺的部分热集成方案,与传统变压精馏相比可节能42.7%,可为甲醇-苯分离的实验研究及其他共沸体系的分离提供参考。  相似文献   

19.
采用萃取精馏的方法分离乙酸乙酯和丁酮共沸物系。选取乙二醇作为萃取剂,利用流程模拟软件Aspen Plus对流程进行模拟,分析不同萃取剂进料量、塔板数、回流比、进料位置等参数对产品质量分数及热负荷的影响。通过模拟发现,当乙二醇进料量为500 kg/h、萃取精馏塔塔板数为30、质量回流比为0. 45、原料进料位置为17块板、萃取剂进料位置为5块板,溶剂回收塔塔板数为10、质量回流比为0. 5、进料位置为第4块板时,可得到质量分数为99. 91%的乙酸乙酯及质量分数为99. 60%的丁酮。通过间歇萃取精馏实验对萃取精馏过程进行验证,发现萃取精馏塔塔顶可得到高达质量分数为98%的乙酸乙酯,证明了模拟结果的可靠性。  相似文献   

20.
利用Aspen Plus模拟软件对完全热集成变压精馏分离甲酸和水的过程进行了模拟,选用NRTL-HOC物性计算模型,模型的二元交互作用参数通过实验数据进行回归。在完全热集成下,分析了理论板数、回流比及进料位置对产品质量分数和塔釜能耗的影响。确定了较佳工艺条件:减压塔理论板数为34,回流比为7,原料和循环物料进料位置分别为第6和第14块塔板,塔顶甲酸质量分数为0.991;常压塔理论板数为32,回流比为8.6,进料位置为第17块塔板,塔顶水质量分数为0.994。与传统变压精馏比较,完全热集成变压精馏降低加热蒸汽能耗48.6%,冷凝水能耗48.9%,且无需附加再沸器或冷凝器。通过间歇变压精馏实验,验证了工艺的可行性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号